
Unsupervised Contrastive Representation Learning: A Survey

Kelsey Ball∗

University of Texas at Austin

Abstract

Unsupervised contrastive representation learning uses unlabeled data to learn a feature space
in which similar inputs are closer together (in Euclidean distance) than dissimilar ones. An ideal
feature space encodes relevant features from the input space, reducing the amount of labeled
data needed for classification. In this paper, we survey theoretical and applied results for image
and text representation learning that use unsupervised contrastive methods.
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1 Introduction

Unsupervised representation learning uses unlabeled data to learn a representation function f that
maps inputs to a points in a feature space. A good representation function reduces the requirement
for labeled data in downstream classification tasks by replacing an input x with its representation
f(x). It seems reasonable that a good representation function should respect the semantic similarity
of inputs; that is, semantically similar inputs should have similar representations.

Contrastive objectives formalize this hypothesis. Assume we have sample access to the following
trio of inputs: an “anchor” x, a “positive” x+ which is similar to x, and N “negatives” {x−i }Ni=1

which are dissimilar to x. Then, we can minimize a contrastive objective of the form:

E
x∼p

x+∼p+x

x−∼p−x

[
− log

(
ef(x)

T f(x+)

ef(x)T f(x+) +
∑N

i=1 e
f(x)T f(x−

i )

)]
, (1)

where p is a distribution over all inputs, p+x is a distribution over valid positives for x, and p−x is a
distribution over valid negatives for x. Note that, when “similarity” corresponds to a shared class
label, we have that p−x (x̂) = p(x̂ | h(x) ̸= h(x̂)), where h is the labeling function.

The objective is minimized when the numerator is almost as large as the denominator. Observe
that this happens when (a) f(x)T f(x+) is large, i.e., when the anchor and positive samples are
mapped to nearby points; and (b) f(x)T f(x−i ) is small for all i, i.e., when the negative samples
are mapped to points that are far from the anchor. Hence, minimizing Eq. (1) yields the desired
feature space.

While contrastive objectives can be used in both supervised and unsupervised settings, this
survey will focus on unsupervised methods. In the unsupervised setting, is it reasonable to assume
sample access to positives and negatives, given that the data is unlabeled? Prior knowledge of
the domain offers heuristics for generating positives and negatives, given an anchor sample. For
example, in the image domain, we can often rotate or blur an image without fundamentally changing
its content or “meaning”. The resulting “image augmentation” will be a positive sample that is
semantically similar to the original. In text, we rely on the distributional hypothesis: words
which co-occur tend to have similar meanings. Therefore, we can often use neighboring words and
sentences as positive samples. In both domains, most approaches generate negatives using random
sampling. The underlying assumption is that, given a large enough dataset, a randomly sampled
other point from the dataset is unlikely to be similar in meaning to the anchor.

2



2 Theoretical Progress

In this section we discuss two themes in existing theoretical work on unsupervised contrastive
representation learning. The first theme regards negative sampling. While simpler to implement
and analyze, random negative sampling creates two issues: (1) false negatives, where a random
negative belongs to the same class as the anchor, and (2) negatives which are too “easy”, i.e.,
so dissimilar from the anchor that they provide no useful information. These issues motivate the
strategy of “hard negative mining”: identifying negatives which have a different class label from the
anchor, but are similar to the anchor and thus mapped to a nearby point. Such examples are likely
to provide more useful gradient information than “easy” negatives, which are already mapped to a
faraway point. Section 2.1 discusses a line of work that studies the extent of these issues and ways
of addressing them.

The second theme regards a conditional independence assumption. Early theoretical works
assume that an anchor and positive sample are independent conditioned on the underlying class
label. Such assumptions ease analysis but are overly strong in practice. Section 2.2 surveys some
works which attempt to relax this type of assumption.

2.1 Negative Sampling

Arora et al. [AKK+19] provide a theoretical framework for unsupervised contrastive representation
learning: Given a set of M points X , they posit that there exists a set of latent classes C, where
each latent class c ∈ C has a distribution Dc over X that indicates the relevance of a point to that
class. They also assume a distribution ρ over the latent classes which characterizes how the latent
classes C occur in unlabeled data. Positive pairs are drawn from the distribution Dsim(x, x+) =
E
c∼ρ

Dc(x)Dc(x
+), and negative samples are sampled according to Dneg(x

−) = E
c∼ρ

Dc(x
−). Then,

assuming sample access to Dsim and Dneg, they choose the representation function f̂ from a function
class F that minimizes the empirical version of Eq. (1) with N = 1.

Using their framework, Arora et al. are able to show rigorous performance guarantees on binary
linear classification when the learned representation f̂ is used. Let Lsup(f̂) denote the supervised
loss when the best linear classifier is used; or, more formally,

Lsup(f̂) = inf
W

Lsup(Wf̂).

Let Lun denote the unsupervised contrastive loss (i.e., Eq. (1)). Arora et al. show that

Lsup(f̂) ≤ αLun(f), ∀f ∈ F , (2)

where α ∈ R is a constant factor that depends on the distribution ρ. In other words, the loss
incurred in the downstream task is upper bounded by the unsupervised contrastive loss, so Lun is
a suitable objective to minimize. Moreover, if the function class F contains a function with low
unsupervised loss, then it will also have low supervised loss using a linear classifier.

While Eq. (2) shows that the unsupervised contrastive loss can upper bound the downstream
supervised loss, it leaves open the question: is small unsupervised loss attainable in practical
settings? They partially answer this question by studying the price of “class collision” or false
negatives, i.e., when a randomly sampled negative comes from the same latent class as the anchor.
They decompose the unsupervised contrastive loss into two parts: the loss when the anchor and
positive samples come (1) from the same class (L=

un) and (2) from different classes (L ̸=
un):

Lun(f) = τL=
un(f) + (1− τ)L̸=

un(f), (3)
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where τ = E
c,c′∼ρ2

1{c = c′} is the probability of class collision. They then bound L=
un(f) as

L=
un(f) ≤ 1 + c′s(f), c′ > 0, (4)

where

s(f) = E
c∼ρ

[√
∥Σ(f, c)∥2 E

x∼Dc

∥f(x)∥|
]

(5)

is a notion of intra-class deviation, with Σ(f, c) being the covariance matrix of f(x) when x ∼ Dc.
Taken together this results in the main theorem:

Lsup(f̂) ≤ L̸=
un + βs(f) + ηGenM (6)

where GenM is a generalization error term with GenM → 0 as M → ∞. If ρ is uniform, then as
the number of classes |C| → ∞, η → 1 and β → 0. Intuitively, this theorem gives two sufficient
conditions for unsupervised contrastive representation learning to work: if F is rich enough to
contain a function f with low L̸=

un(f) and low intra-class variance s(f), then f̂ will have low
supervised linear classification loss.

Follow-up work has used the theoretical framework of Arora et al. to propose and analyze
improvements to random negative sampling. We discuss two results which leverage the same basic
insight: without ground-truth labels, we don’t have access to the true distribution of negatives
p−x (x̂) = p(x̂ | h(x) ̸= h(x̂)); however, we can decompose the marginal p to derive an expression for
p−x in terms of p+x and p, both of which we can estimate empirically:

p(x̂) = τp+x (x̂) + (1− τ)p−x (x̂) (7)

=⇒ p−x (x̂) =
p(x̂)− τp+x (x̂)

1− τ
(8)

where p+x (x̂) = p(x̂|h(x) = h(x̂)) and τ is the probability of class collision as defined previously.
τ can be computed trivially under a uniform assumption on ρ or estimated empirically from the
data.

Instead of sampling negatives from the marginal p (as is common in practice), Chuang et al.
[CRYC+20] analyze Eq. (1) when negatives are sampled from p−x as defined above. They call the
resulting loss function “debiased contrasive loss”, which essentially shifts probability mass away
from positive examples thereby resulting in fewer false negatives. Their experiments show that the
debiased contrastive loss with N negative samples and M = 1 positive sample outperforms the
standard contrastive loss, and that increasing both M and N improves performance.

Robinson et al. [RCSJ20] extend the Chuang et al. by implementing hard negative mining in
unsupervised contrastive representation learning. Similar to the above work, they propose sampling
negatives from an alternate distribution q−β defined as:

q−β (x̂) = qβ(x̂|h(x) ̸= h(x̂)), where qβ(x̂) ∝ eβf(x)
T f(x̂)p(x̂), β ≥ 0. (9)

We note that q−β (x̂) can be derived using the same kind of decomposition as in Eq. (8). The

eβf(x)
T f(x̂) factor adds probability mass to samples in proportion with their similarity to the anchor

sample. This results in harder negatives since there is a greater probability of sampling similar
negative examples, while still using a debiased loss that mitigates the effect of false negatives.
Robinson et al. prove generalization bounds in particular settings and present some empirical
evidence which shows that certain downstream tasks are improved when harder negatives are used.
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2.2 Conditional Independence

A crucial assumption in the above line of work is that positive samples are conditionally indepen-
dent given their label. For example, in [AKK+19], positive samples belonging to a latent class c
are assumed to be drawn from Dsim(x, x+) = E

c∼ρ
Dc(x)Dc(x

+). Lee et al. [LLSZ21] weaken this

assumption to “approximate conditional independence”: positive pairs are approximately condition-
ally independent given the label and some additional latent variables. However, a key difference in
their work is that they study a reconstruction-based objective rather than a contrastive one of the
form Eq. (1). For example, consider the task of image inpainting [PKD+16]: Let X1 be the facade
of a building, and let X2 be a photo of the building with the facade cropped out. Image inpainting
trains an encoder-decoder f which accepts an input image with missing regions and reconstructs
the entire image, computing a loss over the reconstructed pixels. The reconstruction loss is given
by

L(f) = E
(X1,X2)

[
∥X1 − f(X2)∥2

]
, (10)

where f(X2) is masked to only include the reconstructed region. In this formulation, approximate
conditional independence presumes that X1 and X2 are approximately conditionally independent
given the label (building) and some additional latent variables (e.g., the building’s architectural
style, height, etc.) Under these assumptions, they also derive generalization bounds for a linear
image classifier trained on top of the learned reconstruction function f ; however, the difference in
objectives prevents direct comparison of the bounds.

Finally, HaoChen et al. [HWGM21] fully relax this conditional independence assumption, mod-
eling data dependence with a construction called the “population augmentation graph”. The ver-
tices in this graph are image augmentations1, and two vertices are connected if they can be derived
from the same natural image. They assume that there are few edges across ground-truth classes,
as images from different classes likely cannot produce the same image augmentation. Additionally,
there may be disconnected sub-graphs within a class. Given such a graph, one can derive prin-
cipled embeddings of image augmentations using spectral graph decomposition; that is, the top-k
eigenvectors of the normalized adjacency matrix form a natural embedding matrix F ∗ ∈ Rn×k

which captures the spectral clustering of the graph. Creating and decomposing a sufficiently large
population graph is not realistic in practice; instead, we can learn the embedding matrix F ∗ by
minimizing a carefully designed loss function over the class of neural nets. Somewhat surprisingly,
they show that F ∗ can be recovered up to a linear transformation by minimizing the following
population spectral contrastive loss:

L(f) = −2 · E
x,x+

[
f(x)T f(x+)

]
+ E

x,x−

[(
f(x)T f(x−)

)2]
, (11)

which is similar to the standard contrastive loss. Their main result shows that when the represen-
tation dimension k exceeds the maximum number of disconnected sub-graphs, linear classification
with the learned representation function will have small error.

1See Section 3.1 for a more detailed definition of image augmentation.
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3 Application to Images

Unsupervised contrastive representation learning has been shown to be competitive with supervised
pre-training methods (e..g. pre-training on ImageNet) [CKNH20]. In this section we survey a
common framework for image representation learning, as well as some techniques for addressing
relevant computational challenges.

3.1 Image Augmentation

In the general unsupervised setting, it’s not obvious how to identify semantically similar inputs
without knowing their latent class. However, we can easily circumvent this challenge in the image
domain: Given an image, we can derive a similar image by applying transformations like rotation,
discoloration, or cropping. The resulting image will have the same “meaning” as the original, yet
the surface form (i.e., pixel values) will differ greatly. This process of applying meaning-preserving
transformations is referred to as data or image augmentation, and the resulting modified image is
often referred to as an “augmentation” of the original.

3.2 Parallel Augmentation Framework

Image augmentation forms the basis of most approaches in image contrastive learning: two aug-
mentations of an image are derived, then a contrastive loss is applied to maximize agreement
between the pair, with augmented pairs from other images serving as negative examples. Due to
the simplicity and representativeness of their approach, we give an overview of SimCLR [CKNH20].

Fig. 1 depicts the SimCLR framework. Two data augmentation strategies t, t′ are sampled from
a class of strategies T . (The authors conduct an ablation over a wide set of data augmentation
techniques, finding the composition of random cropping and random color distortion to be par-
ticularly effective.) These augmentations are applied to yield two different views of an input x.
The augmentations are encoded using a base encoder f and then passed through an additional
projection layer g. Note that agreement is maximized in the projected space rather than in the

Figure 1: Parallel augmentation framework of SimCLR. Generate two augmentations of an image
using various augmentation strategies and encode with an image encoder. For each image, compute
contrastive loss on a projection of the representation using intra-batch negatives. Image taken from
https://github.com/google-research/simclr.
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representation space.
SimCLR reuses augmentation encodings from other examples in the batch as negatives. That

is, for each image x in the batch, you create two augmentations; then, you apply a contrastive loss
with the augmentations of x as positive examples and the augmentations of every other image x′

as negative examples. Notably, the batch size must be large to get sufficiently diverse and hard
negatives (the authors train with a default batch size of 4096).

3.3 Caching Strategies

Using an extremely large batch size as in [CKNH20] is often computationally prohibitive. This
section covers a few papers which leverage feature representation caching in order to use large
numbers of negative examples in the loss computation.

3.3.1 Instance Discrimination with Memory Bank

Instance contrastive learning [WXYL18] treats each sample as an individual class, then aims to
learn a classifier using noise contrastive estimation. Computing the denominator of the softmax loss
would require the feature representations of each value in the dataset, which is computationally
infeasible. To reduce computation, they store image feature representations in a memory bank.
Then, they approximate the softmax loss by sampling M random indices and retrieving their
representations from the memory bank to use as negatives.

3.3.2 Momentum Contrast

One issue with using a memory bank is that stored image representations become stale as the
parameters of the encoder change. Momentum Contrast [HFW+20] alleviates this problem by
using (and periodically updating) a separate encoder for cached feature representations. This
“momentum encoder” is a weighted combination of past encoders, updated with momentum. The
feature representations produced by the momentum encoder are stored in a queue and re-used for
negative examples. Training proceeds as follows: an image of query sample xq is encoded by the
query encoder q. An augmentation of xq is encoded by the key encoder k and added to the queue.
Finally, a contrastive loss is applied over the query sample, augmentation, and remaining (negative)
representations in the queue.

7



4 Application to Text

In this section we survey two types of contrastive strategies for learning text representations. Con-
text prediction strategies leverage proximity within a document as a signal for semantic similarity.
These approaches train a model to distinguish consecutive words or sentences from random alter-
natives. Data augmentation strategies follow the general framework for image contrastive learning:
perturb an input text in some way to derive a semantically similar positive example, and apply
contrastive loss with other positive pairs serving as negative examples.

4.1 Context Prediction Strategies

Several word and sentence embedding models approximate a contrastive objective through context
prediction. The continuous bag-of-words (CBOW) [MSC+13] algorithm predicts an input word
given the surrounding context to learn word representations. Negative sampling rephrases this as
a binary classification task, distinguishing whether the input word comes from the data or from
a noise distribution. The masked-language-modeling objective of BERT [DCLT18] is similar to
CBOW, predicting a masked token from the surrounding context, but using more powerful trans-
former models to learn word representations. ELECTRA [CLLM20] can be seen as the scaled-up,
transformer-based version of the CBOW with negative sampling algorithm. Finally, QuickThoughts
[LL18] also takes a discriminative approach but at the sentence-level, learning sentence embeddings
through context prediction. Given a context sentence and a set of sentences from the same text, the
model must identify which sentence follows the context sentence. Fig. 2 shows the training process
for QuickThoughts, which learns a separate encoder for the context sentence and for candidate next
sentences, then concatenates the representations from both encoders during inference.

Figure 2: The QuickThoughts training objective maximizes the probability of identifying context
(preceding) sentence for each sentence in the training data. At inference, representations from both
encoders f and g are concatenated. Image taken from [LL18].

4.2 Data Augmentation Strategies

In image contrastive learning, there are many techniques for creating semantically similar images
(random cropping, discoloration, blur, etc.). In contrast, there are no obvious, semantic-preserving
transformations for sentences. Sentences that are close in surface form or edit distance can have
very different semantics (e.g., “I did like the movie” vs. “I did not like the movie”). Nonetheless, the
following line of research explores techniques for creating semantically-equivalent augmentations of
a sentence or text.
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4.2.1 Evaluation Method

The following papers extend or alter the pre-training of transformer-based language models to in-
clude a contrastive objective. To evaluate their pre-training methods, the authors use the GLUE
[WSM+19] and/or SentEval [CK18] benchmarks. Both are collections of natural language under-
standing tasks designed to assess the quality of sentence representations through classification or
regression tasks at the sentence level. Evaluation in the following papers is done by finetuning a
given language model with an added output layer on the supervised dataset for particular task,
then evaluating on the test set.

4.2.2 Contrastive LEArning for sentence Representation (CLEAR)

Given a sentence, CLEAR [WWG+20] generates a similar sentence by applying one or more edit
strategies: deletion of a random word or span, synonym-substitution, or re-ordering. These strate-
gies are depicted in Fig. 3.

Figure 3: Edit strategies used in CLEAR. Image taken from [WWG+20].

Fig. 4 shows the overall approach for CLEAR. First, one or more edit strategies are applied
to the input sentence s, yielding two positive augmentations s̃1, s̃2. These augmented sentences
are encoded using a transformer-based encoder. Following SimCLR [CKNH20], these sentence
representations are mapped to a latent space with an additional feedforward neural network g.
Finally, a contrastive loss is applied to maximize agreement between the representations in this
latent space for a pair of sentence augmentations. Training utilizes intra-batch negatives and the
n-pair multiclass loss.

In addition to using a contrastive loss, the authors use the masked language modeling (MLM)
loss of the original BERT objective. The overall training loss is the sum of these two losses:

Ltotal = LMLM + LCL (12)
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Figure 4: The data augmentation workflow of CLEAR. First, generate two different augmentations
of the original sentence using two random seeds. Encode both using a transformer-based language
encoder, then apply contrastive loss batch-wise. Image taken from [WWG+20].

The authors evaluate models trained on this joint loss against baseline transformer models
on the GLUE dev set, demonstrating that models trained with the joint MLM + contrastive
loss outperform the baseline models trained only with an MLM objective across all GLUE tasks.
Further, they show that different edit strategies (and combinations of edit strategies) work better for
different downstream tasks. The authors also evaluate against a subset of the SentEval benchmark:
namely, the semantic textual similarity (STS) datasets. For all of these tasks, contrastive loss
improves over the baseline. The authors hypothesize that this is because the objective of contrastive
learning (identifying similar instances) aligns well with the STS task.

4.2.3 CERT: Contrastive Self-supervised Learning for Language Understanding

CERT [FWZ+20] generates sentence augmentations by deriving paraphrases of a sentence using
back-translation. Fig. 5 illustrates the data augmentation strategy of CERT using back-translation.
Back-translation is a technique for generating a paraphrase of a text by first translating it to another
language, then translating it back. Given a sentence x in source language S, we can translate it
into a target language T to get a translation x′ of x. Then, we can translate x′ back to S to get a
paraphrase x′′ of x. We expect the translations to be sufficiently aligned to ensure that x and x′′

are semantically similar, but different enough that they will vary in surface form. The authors use
German and Chinese as the target languages to generate two augmentations per sentence.

Figure 5: The data augmentation workflow of CERT using back-translation. Image taken from
[FWZ+20].

CERT uses MoCo [HFW+20] to implement their contrastive training. First, they pretrain
a transformer-based language model (e.g. BERT) on some large-scale input text. Then, they
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continue training the model using their contrastive objective to derive the CERT model. Finally,
the CERT model is finetuned and evaluated on a downstream task. They evaluate CERT on the
GLUE benchmark, with CERT outperforming BERT on 7 tasks, underperforming on 2 tasks, and
matching performance on 2 tasks.

4.2.4 DeCLUTR: Deep Contrastive Learning for Unsupervised Textual Representa-
tions

DeCLUTR [GNBW20] generalizes the QuickThought approach beyond the sentence boundary to
encode arbitrary-length spans of text. The main hypothesis is that nearby spans of text will be
similar in meaning, while distant spans will be less similar. The data augmentation process proceeds
by sampling an anchor span of text, then sampling one or more shorter, nearby spans of text as
positive examples. Other key differences with QuickThought are: they sample one or more positive
spans per anchor (rather than strictly one), and an anchor text may overlap with or subsume a
positive span (rather than strictly being adjacent).

The authors take a pre-trained transformer-based language model and continue its training
using this contrastive objective. The final model is evaluated on the SentEval benchmark. They
compare against word-embedding baselines (GloVe, fasttext) as well as sentence embedding models
(InferSent, USE, and Sent. Transformers). DeCLUTR models consistently outperform the un-
derlying pre-trained language model. They underperform relative to supervised/semi-supervised
pretraining methods, but this is unsurprising given the additional level of supervision.
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5 Concluding Remarks

In this work, we surveyed recent progress in unsupervised contrastive representation learning. Exist-
ing theoretical work gives performance guarantees on downstream linear classification using various
contrastive objectives. Future theoretical work could include a more detailed comparison of the
objectives and generalization bounds in Arora et al., Lee et al., and HaoChen et al. We also sur-
veyed applied results for image and text representation learning. A key strategy in both domains
is to generate different views of an input which preserve its underlying semantics. This is straight-
forward to do for images and has been exploited to great success; analogous strategies for text
representation learning are still being explored.
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