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Overview

@ Motivation
@ Framework for Vision
o Adaptations to NLP
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R
Motivation

We want an image encoder f:
e D

whose image representations can be used to train a simple, linear classifier:

We can evaluate f using the ImageNet Linear Benchmark: (1) train a
linear classifier on representations from f (2) evaluate on ImageNet.
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Figure: Accuracy of contrastive vs. non-contrastive methods on ImageNet Linear
Benchmark.

Kelsey Ball (UT Austin) SDS 384 Final Project September 24, 2022 4/16



Contrastive Learning: Goal
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Contrastive Learning: Goal
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Contrastive Learning: Approach

Contrastive loss with three inputs:
@ anchor example
@ positive example (similar)

@ negative examples (dissimilar)

exp(sim(x, x™))
loss = — log .
exp(sim(x, xT) 4+ > i ; exp(sim(x, x; ))
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Data Augmentation

How to identify similar (positive) examples without knowledge of
underlying class?

Apply meaning-preserving transformation to anchor example.
For images, e.g.:

@ Random cropping

@ Discoloration

o Blur

The result is an "augmentation” of the original image.
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Image Contrastive Learning
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Figure: A Simple Framework for Contrastive Learning of Visual Representations
[CKNH20]
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-
Does This Work For Language?

o Can we adapt the data augmentation approach to language?
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-
Does This Work For Language?

o Can we adapt the data augmentation approach to language?
@ Close in surface form, far in semantics:

| like cake
| don't like cake

Alice likes Bob
Bob likes Alice
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-
Does This Work For Language?

o Can we adapt the data augmentation approach to language?
@ Close in surface form, far in semantics:

| like cake
| don't like cake

Alice likes Bob
Bob likes Alice

@ Unlike images, there are no obvious, semantic-preserving transformations
for text...
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-
Does This Work For Language?

o Can we adapt the data augmentation approach to language?
@ Close in surface form, far in semantics:

| like cake
| don't like cake

Alice likes Bob
Bob likes Alice

@ Unlike images, there are no obvious, semantic-preserving transformations
for text...

@ ...or are there??
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QuickThought [Bral8]

Main Idea: Consecutive sentences are positive pairs, non-consecutive
sentences are negative pairs

Spring had come. —»@— @_.-_. And yet his crops didn’t grow.

(a) Conventional approach

Spring had come. —— @—l

They were so black. a @—1»
And yet his crops didn’t grow. @—2»
He had blue eyes. a@—%

(b) Proposed approach

Classifier
]
~N

Figure: Maximize the probability of identifying context (preceding) sentence for
each sentence in the training data. At inference, representations from both en-

coders are concatenated.
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|
Declutr [GNBW?20]

Main Idea:
@ Generalize QuickThought beyond sentence boundary
o Nearby spans are positive pairs, distant spans are negative pairs

A.
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Figure: (1) Sample an anchor span (2) Sample a shorter, nearby positive span (3)
Compute contrastive loss, using other examples as negatives
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CLEAR [WWG™20]

Main ldea:
o Apply random edits to sentence to get augmented sentence

o Edits include: deletion, substitution, and re-ordering
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Figure: (1) Sample two augmentations from deletion, synonym-substitution, re-
ordering (2) Apply to input sentence to derive two augmentations (3) Compute

contrastive loss
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|
CERT [FWZ+20]

Main ldea:
o Paraphrases are positive examples, derived using back-translation

o Back-translation: translate sentence to another language then back to
get a paraphrase of the original sentence

English-to-German T:n:::::d German-to-English , Translated English
d translation model sentence translation model sentence x’
Original English ncey

sentence x

§ English-to-Chinese Tr(;:slated Chinese-to-English , Translated English
translation model inese translation model sentence x"
sentence z

Figure: (1) Derive positives using back-translation with different target languages
(2) Encode positives using language encoder (3) Compute contrastive loss
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Summary

@ Unsupervised contrastive representation learning has a simple and ma-
ture framework for image learning [CKNH20]

@ Equivalent techniques are still being explored for sentence representation
learning
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