
[CS395] Final Project:
Window-Based Activation Functions

Kelsey Ball
kelseyball@utexas.edu

Marco Bueso
mbueso@utexas.edu

Zayne Sprague
zaynesprague@utexas.edu

1. Introduction

From its origins, deep learning has drawn analogies from
the mammalian brain, particularly finding inspiration on
the human cerebral cortex [7]. One important analogy is
how neurons transmit information. Biologically, neurons
are complex signaling cells, which transmit electric pulses
through “synapses” between adjacent cells. An electric
pulse will only be forwarded by a neuron if the voltage
on the receiving (post-synaptic) neuron reaches a thresh-
old voltage, called “action potential”. Neurons are inter-
connected, and multiple neural paths can converge into a
single post-synaptic neuron’s action potential. Scientists
have modeled this neural activity for decades. Back in 1943,
McCulloch and Pitts presented a simplified neuron model,
based on the “all-or-none” activation on a neuron (the ac-
tion potential), through propositional logic [5]. Using this
model, perceptrons and multi-layer perceptrons followed,
allowing for the first deep learning models.
Activation functions have been used in these networks since
then, and are still a key component. Certain activation func-
tions have provided really good results, with simple imple-
mentations. Perhaps the most common and simplest one is
ReLU, the Rectified Linear Unit activation function. Due
to its effectiveness, a lot of activation functions have been
modeled after ReLU, essentially becoming fine-tuned vari-
ations of it (LeakyReLU, GELU, etc.). A lot of current re-
search in activation functions focuses on iteratively improv-
ing ReLU via small adjustments.
However, we believe it’s a good idea to branch off from the
element-wise implementation of activation functions; draw-
ing inspiration from the mammalian brain, we present a
set of window-based activation function, which aim to re-
semble some of the biological neural network interactions.
Particularly, we’re interested in the synaptic inhibition phe-
nomenon, which can be global or selective. Global synap-
tic inhibition occurs when a presynaptic neuron lowers the
incoming signal to the post-synaptic neuron below the ac-
tion potential threshold, resulting in no information pass-
ing to the downstream neurons or target cells. In selec-
tive presynaptic inhibition, an inhibitory neuron synapses

on one branch of the transmitting neuron, and this inhibits
only one of the multiple targets of the neuron [8]. Follow-
ing the selective inhibition idea, we can formulate a system
where the activation of a node in a neural network can selec-
tively inhibit the transmission of information to neighboring
nodes.
Parting from this idea, we explore different alternatives
where a node’s action potential can have a weighted effect
on neighboring node activations, whether excitatory or in-
hibitory.

2. Related works
2.1. Local Normalizations

Similar functions have been implemented as normaliza-
tion layers. Jarrett et. al [1] implement “local contrast nor-
malization” also inspired by computational neuroscience.
This module subtracts a Gaussian-weighted average of a lo-
cal neighborhood from each value in a feature map, then
divides by a weighted standard deviation of the local neigh-
borhood. This enforces local competition between adjacent
features (adjacent in space as well as kernel dimension) in a
feature map.

Krizhevsky et. al. [3] implement a similar module
termed “local response normalization” with the following
form:

bix,y = aix,y/

k + α

min(N−1, i+n
2 )∑

j=max 0, i−n
2

(ajx,y)
2

β

(1)

where aix,y is the output of applying kernel i at spatial loca-
tion (x, y) then applying a ReLU non-linearity, and bix,y is
the response-normalized output. The sum runs across “adja-
cent” kernel maps at the same spatial location, normalizing
each value by a sum of adjacent (in kernel space) feature
values. This similarly creates competition for large values
in neuron outputs using different kernels.

There are a few differences between these normaliza-
tions and the windowed activations we implement in this
work. While both of these modules consider adjacent ker-

1



nel mappings at the same spatial location in their normal-
ization, our activations solely modulate the signal according
to the spatial neighborhood. Additionally, these works ap-
ply the local normalization after a rectifying non-linearity,
whereas many of our functions reverse this order. Finally,
these two modules mimic inhibitory behavior in neurons,
inducing competition between neighboring activations. In
our work we also attempt to model excitatory behavior of
neurons, with some of our activations amplifying signal in
proportion to local activity rather than inhibiting it.

2.2. Nonlinear Convolution

Our work can also be seen as an attempt to increase the
expressiveness of the standard CNN layer by increasing the
receptive field and gradient flow of the activation function
through window-based operations. Some previous work
aims to increase the expressiveness of the standard CNN
layer by defining alternative, non-linear convolutions.

Lin et. al. [4] replace the standard linear convolution
with an approximation of a general nonlinear function by
appending a two-layer multi-layer perceptron (MLP) to
each convolutional layer. Similarly, Zoumpourlis et. al. [10]
approximate a nonlinear function using polynomial expan-
sion. They implement a quadratic convolution using two
sets of kernel weights: the first-order kernel contains the
coefficients of the filter’s linear part, while the second-order
kernel contains the coefficients of quadratic interactions be-
tween two input elements. Finally, Kim et. al. [2] propose a
non-linear convolutional filter as the negative square of sub-
traction between the image patch and kernel weights. They
show that their filter results in a faster reduction in test error
over the standard linear convolution for image classification
on black-and-white and gray-scale images.

3. Technical Approach
Similar to how convolution is applied to raw pixels or

feature maps, our window-based activations use PyTorch’s
native unfold and fold functions to retrieve patches of
an activation map and stitch it back together. Although our
proposed activations utilize patches or windows of feature
maps the comparison to convolution ends there. Instead of
performing aggregations per element, our activations utilize
various window statistics to influence the final output. This
allows the activation to mimic some of the dynamics seen
in neuroscience and biology where “neurons” with low ac-
tivations could impact high activations and vice versa.

We begin with an activation map from a convolu-
tional layer, extract its patches so that each patch is non-
overlapping and is only of size H x W (each channel will
be separated into its own set of patches). Once the patches
are extracted, an activation is ran on each patch individually.

Once the activation functions have been applied, the filtered
patches are then stitched back to the original dimensions
and passed to the next layer of the network. We have found
empirically that the window based activation functions are
slower than element-wise activations. Window based acti-
vations average around 2-3 times slower than ReLU vari-
ants.

This implementation of window based activations differs
from previous work in a few ways. First, we use specific
window statistics (weighted sum of negative values, etc.) to
influence the propagation of the feature patch values. Sec-
ond, the window activation function applied to each patch
can inspire competition or collaboration between values
(excitatory vs inhibitory) depending on the window statis-
tics used. Lastly, differential and non-differential functions
can be used so long as the patch function applies a selective
index to the original values (similar to ReLU) which is done
for a few of our activation functions. These differences al-
low for a wider search of window based functions and open
up new possibilities for biologically inspired networks. In
our experiments we tested seven different activation func-
tions described below.

NeLU (see Figure 2), for example, is meant to loosely
resemble inhibitory neurons by draining portions of pos-
itive activations, potentially preventing them from firing.
To accomplish this, NeLU takes a weighted sum of all the
negative activations and adds that to each of the positive
elements in the window. After the negative values have
been added to the positive activations, only the activations
that remain positive are allowed to pass through to the next
layer. An interesting side-effect of NeLU when compared to
ReLU is that although negative activations do not propagate
forward (like ReLU), those negative activations will have a
gradient so long as one activation in their window is posi-
tive. Although this is an area we are still working on, we be-
lieve this helps facilitate training of “dead neurons”, which
can occur frequently using ReLU. In NeLU, “dead neurons”
would only occur with “dead patches” which seems far less
likely.

Excitator (see Figure 2) is a similar activation to NeLU,
though it takes a weighted sum of the positive values and
adds it to the negatives. The positive values are then ad-
justed for the shift in activation proportional to the strength
of their original signal. After the positive influence has been
distributed, anything now positive is passed through. Al-
though this doesn’t allow negative neurons to have a gradi-
ent to train on, it reduces sparsity within the patch by weak-
ening the negative signal of nearby activations (potentially
flipping them to positive and allowing them to propagate).

Passive NeLU is the third proposed activation, and it be-
haves similar to NeLU again, with one exception, it allows

2



Figure 1. Window-Based Activation Function A generic model for the proposed set of window-based activation functions, where
neighboring activations have different effects on each other.

Figure 2. Example Window-Based Activation Functions An example input patch, and the corresponding outputs for the subset of
activation functions: (1) excitator, (2) inhibitor, (3) nelu, and (4) max.

anything that was originally positive to propagate (even if
the activation was turned negative after the redistribution of
signals). Because of this interaction, Passive NeLU allows
certain negative values to propagate forward and allows for

gradients of non-propagated signals.
Inhibitor (see Figure 2) is our fourth activation and is

similar to Excitator except it performs the equal redistribu-
tion of negative weight on the positive signals. This allows

3



Activation Tiny IN Caltech-101 CIFAR-100

ReLU 30.74 44.32 40.3
LeakyReLU 31.11 46.16 39.91
GELU 30.04 41.17 41.41

Max 23.45 37.79 43.33
MaxReLU 23.56 41.17 42.08
Softmax Threshold 29.35 46.62 39.55
NeLU 27.33 38.33 40.03
PNeLU 29.62 47.77 36.71
Inhibitor 27.28 42.70 37.58
Excitator 34.27 47.47 47.37

Table 1. Table showing the test accuracies of the baseline acti-
vations after 50 epochs of training vs the test accuracies of our
activations. All results are trained on a custom ResNet-38 model
with no pre-training. Excitator outperforms all baselines, in some
cases dramatically as seen in CIFAR-100 where it achieves nearly
6 points higher than the leading baseline.

for negative signals to have gradients and creates a very
sparse activation layer.

SoftmaxReLU applies a softmax to every value in the
feature patch, then performs a ReLU like thresholding on
the values. The threshold that allows values to propagate is
a hyperparameter and we set ours to .25 for our experiments.

MaxReLU finds the maximum value within the patch
and only allows it to propagate if it is above 0.

Max (see Figure 2) finds the maximum value within the
patch and allows it to propagate regardless of its value.

4. Results

See Table 1 and Table 2
We tested all 7 activation functions on a custom imple-

mentation of ResNet-38 and a pre-trained EfficientNet-b0.
We compared each of our activations with 3 baseline ac-
tivations that are similar to ours: ReLU, LeakyReLU, and
GeLU. Furthermore, we tested each of our activation func-
tions on various different hyper-parameter settings includ-
ing differing window sizes and influence weight. Each
test was run on three different datasets: Tiny ImageNet,
Caltech-101 and CIFAR-100. Accuracy is measured on the
validation set and the task to solve for is image classifica-
tion.

The results show that Excitator is a fairly strong activa-
tion function, with Excitator outperforming all baselines on
the ResNet model. Although other activations did manage
to outperform a number of the baseline activations – Exci-
tator (a signal amplifier window activation function) seems
to perform consistently better than all others. Krizhevsky
et. al. [3] also experienced a large jump in classification
scores during their experiments with competitive kernels.

Activation Tiny IN Caltech-101 CIFAR-100

ReLU 62.89 81.87 57.86
LeakyReLU 62.85 82.95 58.76
GELU 63.39 82.33 58.51

MaxReLU 57.03 72.89 50.12
SoftmaxReLU 59.02 79.26 53.98
Inhibitor v2 62.31 82.33 57.55
Excitator v2 61.97 82.18 56.84

Table 2. Results using a pre-trained EfficientNet-b0 (5.3M
params) and baseline vs. our activations on TinyImageNet,
Caltech-101, and CIFAR-100. Results shown are the test set accu-
racies using the best hyperparameters after 15 epochs of training.

An exciting area of future work would be to re-implement
Krizhevsky et. al. and compare them with Excitator and
other window based activations.

4.1. Experiments on EfficientNet

We also tested our activations using EfficientNet [9], a
state-of-the-art CNN used for image recognition. Efficient-
Net uses Swish [6] as an activation function between most
layers in the model. To test our activations, we substituted
our activation function after the first convolutional layer in
the model, with subsequent layers unchanged. We initial-
ized the model using pretrained weights1, swapped in our
activation function (or a baseline activation function), then
finetuned using the training set of each dataset.

Table 2 shows the results of our modified EfficientNet on
three different datasets. GELU performs the best on Tiny
ImageNet, while LeakyReLU performs the best on CIFAR-
100 and Caltech-101. On Caltech-101, Inhibitor v2 outper-
forms ReLU and matches the performance of GELU. How-
ever, overall we do not see the same performance gains we
did on our custom ResNet model using windowed activa-
tions. Further experiments might explore adding our activa-
tions in more and different places throughout the Efficient-
Net architecture, training for longer, and conducting a wider
hyperparameter search. It’s also plausible that training from
a random initialization with our activations may work better
than finetuning a pretrained model.

5. Conclusion

We have introduced a new class of activation functions,
window-based activations, and shown that they can outper-
form state-of-the-art element-wise activation functions with
proper training time, hyperparameter settings, and initial-
izations. However, there is still an extremely large amount
of work that can be done. Exploring trade-offs between

1https://github.com/lukemelas/EfficientNet-PyTorch

4



pretrained models and random initialization, more windo–
based activations, and different types of window-based non-
linearities are all possible and should be explored in future
work.

References
[1] Kevin Jarrett, Koray Kavukcuoglu, Marc’Aurelio Ranzato,

and Yann LeCun. What is the best multi-stage architecture
for object recognition? In 2009 IEEE 12th international con-
ference on computer vision, pages 2146–2153. IEEE, 2009.
1

[2] Hyoseob Kim, Hojun Yoo, Jung Lyul Lee, and Seoungho
Lee. Convolution layer with nonlinear kernel of square
of subtraction for dark-direction-free recognition of images.
Mathematical Models in Engineering, 6(3):147–159, 2020.
2

[3] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. Advances in neural information processing systems,
25:1097–1105, 2012. 1, 4

[4] Min Lin, Qiang Chen, and Shuicheng Yan. Network in net-
work. arXiv preprint arXiv:1312.4400, 2013. 2

[5] Pitts W. McCulloch, W.S. A logical calculus of the ideas
immanent in nervous activity. Bulletin of Mathematical Bio-
physics, 5:115–133, 1943. 1

[6] Prajit Ramachandran, Barret Zoph, and Quoc V Le.
Searching for activation functions. arXiv preprint
arXiv:1710.05941, 2017. 4

[7] Terrence J. Sejnowski. The unreasonable effectiveness of
deep learning in artificial intelligence. Proceedings of the
National Academy of Sciences, 117(48):30033–30038, 2020.
1

[8] Dee U. Silverthorn. Human Physiology: An Integrated Ap-
proach. Pearson/Benjamin Cummings, San Francisco, 2007.
1

[9] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In International
Conference on Machine Learning, pages 6105–6114. PMLR,
2019. 4

[10] Georgios Zoumpourlis, Alexandros Doumanoglou, Nicholas
Vretos, and Petros Daras. Non-linear convolution filters for
cnn-based learning. In Proceedings of the IEEE international
conference on computer vision, pages 4761–4769, 2017. 2

5


	. Introduction
	. Related works
	. Local Normalizations
	. Nonlinear Convolution

	. Technical Approach
	. Results
	. Experiments on EfficientNet

	. Conclusion

