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Problem Setting

Typical Multi-Armed Bandit (MAB) setting:

1 Play arm i

2 Observe numerical reward Xt(i)

Preference-based MAB setting:

1 Play two arms i , j

2 Observe (with noise) which arm is better
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Motivation

Preferential feedback (e.g., a pairwise comparison) is sometimes more
readily available than scalar estimates of reward

Examples:

Eye doctor examination
Ranker evaluation for information retrieval systems
TrueSkill: Xbox gamer ranking system
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Problem Formulation

Set of k arms A = {a1, . . . , ak}
Characterized by preference relation Q = [qi ,j ] ∈ [0, 1]k×k where qi ,j is
the probability of observing a preference for ai over aj

We say ai ≻ aj if qi ,j > 1/2

A ”tie” or indifference is modeled as qi ,j = 1/2; thus qi ,i = 1/2 for all
i ∈ [k].
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How is Regret Defined?

First, define ∆i ,j as a notion of distinguishability between arms:

∆i ,j = qi ,j − 1/2

qi,j ∆i,j Interpretation

0 -1/2 i never beats j

1/2 0 i , j indistinguishable

1 1/2 i always beats j

Note: ∆i ,j > 0 implies ai ≻ aj
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How is Regret Defined?

Main Idea: Player incurs small regret by choosing two nearly optimal
arms

Rn =
1

2

n∑
t=1

∆i∗,i(t) +∆i∗,j(t)

Note: For an optimal arm i∗,

∆i∗,j(t) ≥ 0

so regret will be non-negative.

Note: Regret is zero only if player compares the optimal arm to itself;
i.e. commits to choice of best arm and refrains from gathering more
information
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Interleaved Filter (IF) [YJ09]

Overview

Explore-then-exploit algorithm

Explore phase: successive elimination of suboptimal arms (with high
probability), until one remains

Exploit phase: repeatedly compare best (hypothesized) arm to itself

Expected regret bound:

E [Rn] = O

(
k

minj ̸=i∗ ∆i∗,j
log n

)

Kelsey Ball (UT Austin) Online Learning Final Project September 24, 2022 8 / 24



Interleaved Filter (IF) [YJ09]

IF makes strong assumptions on underlying preference matrix Q:

There exists a total ordering a1 ≻ a2 ≻ · · · ≻ ak such that ai ≻ aj =⇒
∆i ,j > 0

Strong Stochastic Transitivity (SST): for ai ≻ aj ≻ ak ,

∆i ,k ≥ max{∆i ,j ,∆j ,k}

Stochastic Triangle Inequality (diminishing returns):

∆i ,k ≤ ∆i ,j +∆j ,k

Kelsey Ball (UT Austin) Online Learning Final Project September 24, 2022 9 / 24



Trick For Bounding Explore-Exploit Algo-
rithms

Explore-exploit algorithms can be constructed in such a way that the
regret is determined solely by the explore phase:

Show that the explore phase returns the best arm w.p. ≥ 1− 1
n .

If, instead, it returns a suboptimal arm (w.p. ≤ 1
n ), we can upper bound

the total regret by n.

Thus,

E [Rn] =

(
1− 1

n

)
E [Rexplore

n ] +
1

n
· n

= O
(
E [Rexplore

n ] + 1
)

Therefore the expected regret is upper bounded by the expected regret of
the explore phase.
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Interleaved Filter (IF) [YJ09]

Explore

Maintain candidate best arm b̂

Compare b̂ with all other arms via round robin

Prune any arms that are inferior w.p. 1− δ

If any arm b′ is superior to b̂ w.p. 1− δ, prune b̂ from candidate
set and update b̂ ← b′

Exploit

Repeatedly play b̂, b̂
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Interleaved Filter (IF) [YJ09]

How to prune inferior arms with high probability?

Maintain empirical estimate P̂
(t)
i ,j of Pr(ai ≻ aj) as fraction of wins in t

comparisons

Maintain confidence interval for P̂
(t)
i ,j :

Ĉ
(t)
i ,j = (P̂

(t)
i ,j − c , P̂

(t)
i ,j + c), c =

√
log 1

δ

t

such that P̂
(t)
i ,j ∈ Ĉ

(t)
i ,j for all t w.h.p.

If P̂b̂,b′ > 1/2 and 1/2 /∈ Ĉb̂,b′ , prune b′
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Interleaved Filter (IF) [YJ09]

Figure: Cumulative regret over different values of k for a fixed time horizon,
averaged over 10 runs.
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Beat The Mean (BTM) [YJ11]

Overview

Elimination algorithm that favors arms with the fewest comparisons and
pairs them with another arm uniformly at random (the “mean” arm)

Relaxes strong transitivity assumption: there exists some γ ≥ 1 such
that

γ∆i ,k ≥ max{∆i ,j ,∆j ,k}

Gives high probability bound on regret in addition to bound on expected
regret. Both are of order

O

(
γ7k

minj ̸=i∗ ∆i∗,j
log n

)
Matches IF bound when γ = 1, i.e. strong transitivity holds
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Beat The Mean (BTM) [YJ11]

Explore

In each round t, while candidate pool |Wt | > 1:

Select arm b with fewest comparisons

Select arm b′ uniformly at random from Wt

Compare b, b′

Update P̂b or P̂b′ :=
#wins

#comparisons

If (empirically) best and worst arm separated by large enough
margin, eliminate worst and start new round

Exploit

Let b̂ be the unique arm in Wt . Repeatedly play b̂, b̂.
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Beat The Mean (BTM) [YJ11]

What margin is needed to separate empirically best and worst arms?

If

min
b′∈Wt

P̂b′ + c ≤ max
b∈Wt

P̂b − c , cδ,γ(n) = 3γ2
√

1

n
log

1

δ

Then remove argminb′∈Wt
P̂b′ from Wt .
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Beat The Mean (BTM) [YJ11]

Figure: Cumulative regret over different values of k for a fixed time horizon,
averaged over 10 runs.
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Relative UCB (RUCB) [ZWMR14]

Main Idea:

For the first arm, choose a hypothetical best arm

For the second arm, choose arm with the best chance of beating the
first arm

Improvements over IF/BTM:

Horizonless (does not need knowledge of n)

Relaxed assumptions on preference matrix (does not require total order-
ing, strong stochastic transitivity, or stochastic triangle inequality; only
requires a best arm)
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Relative UCB (RUCB) [ZWMR14]

RUCB Algorithm

In each round t:

Get candidate set of plausible best arms i.e.:

Wt = {i : q̂i ,j(t) + ci ,j(t) > 1/2 ∀j ̸= i}

Select one candidate arm b uniformly at random from Wt

Use UCB to choose the other candidate arm b′:

b′ = argmax
j ̸=b

Uj ,b

where Uj ,b = q̂j ,b(t) + cj ,b

Compare b, b′ and update q̂b,b′(t), q̂b′,b(t)
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Relative UCB (RUCB) [ZWMR14]

Expected and high probability bounds:

Rn ≤ O

k2 +
∑
i ̸=i∗

log n

∆2
i ,i∗


Not directly comparable to IF/BTM bounds, which only depend on
minj ̸=i∗ ∆i∗,j
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Relative UCB (RUCB) [ZWMR14]

Figure: Cumulative regret for RUCB vs. BTM over different values of k, averaged
over 10 runs.
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Related Tasks/Problem Settings

(ε, δ)-PAC learning: the best arm, a ranking of arms, the top-k arms, or
Q.

Non-coherent preference matrices (e.g. allow preferential cycles) – re-
quire alternative notions of regret/target concepts

Multi-Armed Dueling Bandits: player may select an arbitrary subset of
arms and observe preferential feedback
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Open Problems

Statistical tests to determine whether the assumptions of the preference
matrix (transitivity, triangle inequality) hold, given sample access to Q

Combining preference-based and real-valued MAB settings (player may
choose whether to pull a single arm and observe numerical reward, or
multiple and observe preferential reward)
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