# Preference-Based Multi-Armed Bandits 

## Kelsey Ball

The University of Texas at Austin
September 24, 2022


The University of Texas at Austin

## Agenda

- Problem Setting
- Algorithms
- Simulations
- Related/Open Problems


## Problem Setting

Typical Multi-Armed Bandit (MAB) setting:
(1) Play arm i
(2) Observe numerical reward $X_{t}(i)$

Preference-based MAB setting:
(1) Play two arms $i, j$
(2) Observe (with noise) which arm is better

## Motivation

- Preferential feedback (e.g., a pairwise comparison) is sometimes more readily available than scalar estimates of reward
- Examples:
- Eye doctor examination
- Ranker evaluation for information retrieval systems
- TrueSkill: Xbox gamer ranking system


## Problem Formulation

- Set of $k$ arms $\mathcal{A}=\left\{a_{1}, \ldots, a_{k}\right\}$
- Characterized by preference relation $Q=\left[q_{i, j}\right] \in[0,1]^{k \times k}$ where $q_{i, j}$ is the probability of observing a preference for $a_{i}$ over $a_{j}$
- We say $a_{i} \succ a_{j}$ if $q_{i, j}>1 / 2$
- A "tie" or indifference is modeled as $q_{i, j}=1 / 2$; thus $q_{i, i}=1 / 2$ for all $i \in[k]$.


## How is Regret Defined?

First, define $\Delta_{i, j}$ as a notion of distinguishability between arms:

$$
\Delta_{i, j}=q_{i, j}-1 / 2
$$

| $q_{i, j}$ | $\Delta_{i, j}$ | Interpretation |
| :---: | :---: | :---: |
| 0 | $-1 / 2$ | $i$ never beats $j$ |
| $1 / 2$ | 0 | $i, j$ indistinguishable |
| 1 | $1 / 2$ | $i$ always beats $j$ |

Note: $\Delta_{i, j}>0$ implies $a_{i} \succ a_{j}$

## How is Regret Defined?

- Main Idea: Player incurs small regret by choosing two nearly optimal arms

$$
R_{n}=\frac{1}{2} \sum_{t=1}^{n} \Delta_{i^{*}, i(t)}+\Delta_{i^{*}, j(t)}
$$

- Note: For an optimal arm $i *$,

$$
\Delta_{i^{*}, j(t)} \geq 0
$$

so regret will be non-negative.

- Note: Regret is zero only if player compares the optimal arm to itself; i.e. commits to choice of best arm and refrains from gathering more information


## Interleaved Filter (IF) [YJ09]

Overview

- Explore-then-exploit algorithm
- Explore phase: successive elimination of suboptimal arms (with high probability), until one remains
- Exploit phase: repeatedly compare best (hypothesized) arm to itself
- Expected regret bound:

$$
E\left[R_{n}\right]=O\left(\frac{k}{\min _{j \neq i^{*}} \Delta_{i^{*}, j}} \log n\right)
$$

## Interleaved Filter (IF) [YJ09]

IF makes strong assumptions on underlying preference matrix Q :

- There exists a total ordering $a_{1} \succ a_{2} \succ \cdots \succ a_{k}$ such that $a_{i} \succ a_{j} \Longrightarrow$ $\Delta_{i, j}>0$
- Strong Stochastic Transitivity (SST): for $a_{i} \succ a_{j} \succ a_{k}$,

$$
\Delta_{i, k} \geq \max \left\{\Delta_{i, j}, \Delta_{j, k}\right\}
$$

- Stochastic Triangle Inequality (diminishing returns):

$$
\Delta_{i, k} \leq \Delta_{i, j}+\Delta_{j, k}
$$

## Trick For Bounding Explore-Exploit Algo-

 rithmsExplore-exploit algorithms can be constructed in such a way that the regret is determined solely by the explore phase:

- Show that the explore phase returns the best arm w.p. $\geq 1-\frac{1}{n}$.
- If, instead, it returns a suboptimal arm (w.p. $\leq \frac{1}{n}$ ), we can upper bound the total regret by $n$.
- Thus,

$$
\begin{array}{r}
E\left[R_{n}\right]=\left(1-\frac{1}{n}\right) E\left[R_{n}^{\text {explore }}\right]+\frac{1}{n} \cdot n \\
=O\left(E\left[R_{n}^{\text {explore }}\right]+1\right)
\end{array}
$$

Therefore the expected regret is upper bounded by the expected regret of the explore phase.

## Interleaved Filter (IF) [YJ09]

## Explore

- Maintain candidate best arm $\hat{b}$
- Compare $\hat{b}$ with all other arms via round robin
- Prune any arms that are inferior w.p. $1-\delta$
- If any arm $b^{\prime}$ is superior to $\hat{b}$ w.p. $1-\delta$, prune $\hat{b}$ from candidate set and update $\hat{b} \leftarrow b^{\prime}$


## Exploit

- Repeatedly play $\hat{b}, \hat{b}$


## Interleaved Filter (IF) [YJ09]

How to prune inferior arms with high probability?

- Maintain empirical estimate $\hat{P}_{i, j}^{(t)}$ of $\operatorname{Pr}\left(a_{i} \succ a_{j}\right)$ as fraction of wins in $t$ comparisons
- Maintain confidence interval for $\hat{P}_{i, j}^{(t)}$ :

$$
\hat{C}_{i, j}^{(t)}=\left(\hat{P}_{i, j}^{(t)}-c, \hat{P}_{i, j}^{(t)}+c\right), \quad c=\sqrt{\frac{\log \frac{1}{\delta}}{t}}
$$

such that $\hat{P}_{i, j}^{(t)} \in \hat{C}_{i, j}^{(t)}$ for all $t$ w.h.p.

- If $\hat{P}_{\hat{b}, b^{\prime}}>1 / 2$ and $1 / 2 \notin \hat{C}_{\hat{b}, b^{\prime}}$, prune $b^{\prime}$


## Interleaved Filter (IF) [YJ09]



Figure: Cumulative regret over different values of $k$ for a fixed time horizon, averaged over 10 runs.

## Beat The Mean (BTM) [YJ11]

Overview

- Elimination algorithm that favors arms with the fewest comparisons and pairs them with another arm uniformly at random (the "mean" arm)
- Relaxes strong transitivity assumption: there exists some $\gamma \geq 1$ such that

$$
\gamma \Delta_{i, k} \geq \max \left\{\Delta_{i, j}, \Delta_{j, k}\right\}
$$

- Gives high probability bound on regret in addition to bound on expected regret. Both are of order

$$
O\left(\frac{\gamma^{7} k}{\min _{j \neq i^{*}} \Delta_{i^{*}, j}} \log n\right)
$$

- Matches IF bound when $\gamma=1$, i.e. strong transitivity holds


## Beat The Mean (BTM) [YJ11]

## Explore

In each round $t$, while candidate pool $\left|W_{t}\right|>1$ :

- Select arm $b$ with fewest comparisons
- Select arm $b^{\prime}$ uniformly at random from $W_{t}$
- Compare $b, b^{\prime}$
- Update $\hat{P}_{b}$ or $\hat{P}_{b^{\prime}}:=\frac{\text { \#wins }}{\text { \#comparisons }}$
- If (empirically) best and worst arm separated by large enough margin, eliminate worst and start new round


## Exploit

- Let $\hat{b}$ be the unique arm in $W_{t}$. Repeatedly play $\hat{b}, \hat{b}$.


## Beat The Mean (BTM) [YJ11]

- What margin is needed to separate empirically best and worst arms?
- If

$$
\min _{b^{\prime} \in W_{t}} \hat{P}_{b^{\prime}}+c \leq \max _{b \in W_{t}} \hat{P}_{b}-c, \quad c_{\delta, \gamma}(n)=3 \gamma^{2} \sqrt{\frac{1}{n} \log \frac{1}{\delta}}
$$

Then remove $\arg \min _{b^{\prime} \in W_{t}} \hat{P}_{b^{\prime}}$ from $W_{t}$.

## Beat The Mean (BTM) [YJ11]



Figure: Cumulative regret over different values of $k$ for a fixed time horizon, averaged over 10 runs.

## Relative UCB (RUCB) [ZWMR14]

Main Idea:

- For the first arm, choose a hypothetical best arm
- For the second arm, choose arm with the best chance of beating the first arm

Improvements over IF/BTM:

- Horizonless (does not need knowledge of $n$ )
- Relaxed assumptions on preference matrix (does not require total ordering, strong stochastic transitivity, or stochastic triangle inequality; only requires a best arm)


## Relative UCB (RUCB) [ZWMR14]

## RUCB Algorithm

In each round $t$ :

- Get candidate set of plausible best arms i.e.:

$$
W_{t}=\left\{i: \hat{q}_{i, j}(t)+c_{i, j}(t)>1 / 2 \forall j \neq i\right\}
$$

- Select one candidate arm $b$ uniformly at random from $W_{t}$ - Use UCB to choose the other candidate arm $b^{\prime}$ :

$$
b^{\prime}=\underset{j \neq b}{\arg \max } U_{j, b}
$$

where $U_{j, b}=\hat{q}_{j, b}(t)+c_{j, b}$

- Compare $b, b^{\prime}$ and update $\hat{q}_{b, b^{\prime}}(t), \hat{q}_{b^{\prime}, b}(t)$


## Relative UCB (RUCB) [ZWMR14]

- Expected and high probability bounds:

$$
R_{n} \leq O\left(k^{2}+\sum_{i \neq i^{*}} \frac{\log n}{\Delta_{i, i^{*}}^{2}}\right)
$$

- Not directly comparable to IF/BTM bounds, which only depend on $\min _{j \neq i^{*}} \Delta_{i^{*}, j}$


## Relative UCB (RUCB) [ZWMR14]

RUCB vs. BTM for different $k$


Figure: Cumulative regret for RUCB vs. BTM over different values of $k$, averaged over 10 runs.

## Related Tasks/Problem Settings

- $(\varepsilon, \delta)$-PAC learning: the best arm, a ranking of arms, the top-k arms, or $Q$.
- Non-coherent preference matrices (e.g. allow preferential cycles) - require alternative notions of regret/target concepts
- Multi-Armed Dueling Bandits: player may select an arbitrary subset of arms and observe preferential feedback


## Open Problems

- Statistical tests to determine whether the assumptions of the preference matrix (transitivity, triangle inequality) hold, given sample access to $Q$
- Combining preference-based and real-valued MAB settings (player may choose whether to pull a single arm and observe numerical reward, or multiple and observe preferential reward)


## Reference I

[YJ09] Yisong Yue and Thorsten Joachims. Interactively optimizing information retrieval systems as a dueling bandits problem. In Proceedings of the 26th Annual International Conference on Machine Learning, pages 1201-1208, 2009.
[YJ11] Yisong Yue and Thorsten Joachims. Beat the mean bandit. In Proceedings of the 28th International Conference on Machine Learning (ICML-11), pages 241-248. Citeseer, 2011.
[ZWMR14] Masrour Zoghi, Shimon Whiteson, Remi Munos, and Maarten Rijke. Relative upper confidence bound for the k -armed dueling bandit problem. In International conference on machine learning, pages 10-18. PMLR, 2014.

