
CS388 Project 1: Sequence Models for Named-Entity Recognition

Kelsey Ball
The University of Texas at Austin

kelseytaylorball@gmail.com

Abstract

Named-entity recognition (NER) is the
task of identifying references to named en-
tities in a text. In this project, we im-
plement two sequential models for use in
an NER system: a Hidden Markov Model
(HMM) and a Conditional Random Field
(CRF), and evaluate their performance and
speed. We also explore various optimiza-
tions to the CRF during feature extraction,
training, and inference.

1 Introduction

A named entity is an object denoted by a particular
name, such as a person, location, or organization.
Named-entity recognition is the task of identifying
references to named entities in a text. Names may
contain a single word, such as Walmart, or mul-
tiple words, such as New Zealand. The word or
words in a name are referred to as a named-entity
”chunk”; the goal of an NER system is to label
such chunks in a sentence.

1.1 Data

For training and evaluation of our models, we use
data from the CoNLL 2003 Shared Task (Tjong
Kim Sang and De Meulder, 2003). An example of
the data is provided here:

EU NNP I-NP B-ORG
rejects VBZ I-VP O
German JJ I-NP B-MISC
call NN I-NP O
to TO I-VP O
boycott VB I-VP O
British JJ I-NP B-MISC
lamb NN I-NP O
. . O O

The last column contains the NER tag, which
follows a begin-inside-outside (BIO) scheme: the

B- prefix denotes the beginning of a tag; I- de-
notes the inside; and O denotes that the word is
not part of a named entity. The suffix (e.g., -ORG)
denotes the type of entity.

2 Models

We first implement a Hidden Markov Model
where the transition probabilities and emission
probabilities are computed through maximum-
likelihood estimation over the training set. We
then implement a Conditional Random Field,
which uses fixed, rule-based transition potentials
and learns a set of feature weights for emission
potentials. We describe each model and their im-
plementation below.

2.1 Hidden Markov Model

A Hidden Markov Model (HMM) models a se-
quence of ”hidden” or latent states which corre-
spond to a sequence of observations, or ”emit-
ted” states. In the NER problem setting, the
latent states are named-entity tags, and the ob-
servations are words. The latent states form a
Markov chain, in which future states are condi-
tionally independent of past states given the cur-
rent state. Further, the model assumes that ob-
servations are conditionally independent, given
their latent states. These strong assumptions al-
low us to efficiently learn a generative model using
maximum-likelihood estimation where

P (y|x) ∝ P (y1)

[
n∏

i=2

P (yi|yi−1)

] [
n∏

i=2

P (xi|yi)

]

To predict NER chunks on an unseen sequence,
we use the Viterbi algorithm to compute and return
the most likely sequence of NER tags.

2.2 Conditional Random Field

Like an HMM, a Conditional Random Field
(CRF) models transition probabilities in the latent



sequence, and thus is useful for structured predic-
tion. However, whereas a single observation in an
HMM only depends on its latent state, a CRF can
model dependencies across observations. Our se-
quential CRF assigns the conditional probability
of a tag sequence given a word sequence using a
transition ”potential” (or score) and an emission
potential:

P (y|x) ∝ exp wT

[
n∑

i=2

ft(yi|yi−1)+

n∑
i=2

fe(yi, i,x)

ft is a rule-based function that assigns zero
probability to illegal transitions and uniform prob-
abilities across legal transitions. fe produces a fea-
ture vector for a word based on lexical features and
neighboring words. We only learn weights in w
which are associated with the output of fe.

Like the HMM, the CRF also uses Viterbi de-
coding to compute the most likely sequence of
tags during inference. We train our baseline
CRF model by maximizing the conditional log-
likelihood of our training data using stochastic
gradient ascent with a step-size of 1.0 for 5 epochs.

2.3 Comparison

Table 1 compares the performance of the HMM
and baseline CRF model on the development
set. The HMM trains much faster, given that
maximum-likelihood estimation reduces to count-
ing pairs of words and tags in the training set,
and requires no gradient-based optimization. In-
ference is also faster for the HMM, because emis-
sion probabilities are pre-computed during train-
ing, whereas the CRF must extract features and
evaluate an inner product during inference to com-
pute an emission potential. However, the CRF
achieves a significantly higher F1 score.

Model Dev F1 Train time Inf. time
HMM 76.89 1.52s 6.79s
CRF 81.75 2501.23s 189.20s

Table 1: HMM vs. CRF.

3 Extension

Our project extension explores speedups to the
CRF model. In this section we discuss optimiza-

tions to the pre-processing, training, and inference
of our CRF model.

3.1 Pre-processing

Feature extraction: The baseline implementation
extracts word features for each (word, tag) pair;
however, the tag is only used trivially during ex-
traction. To speed up this function, we extract a
set of features once per word, then subsequently
re-label the feature set for each tag.

We measure the effect of this speedup on pre-
processing, during which we cache feature vec-
tors for all (word, tag) pairs in the training set.
Our optimization produced a 40.61% reduction in
feature-extraction time, representing an absolute
reduction of 14.17 seconds.

We also measure the effect of this speedup dur-
ing inference by measuring the total inference time
over the development set. Our optimization pro-
duced a 2.19% relative speedup and an absolute
reduction of 4.14 seconds, indicating that a rela-
tively small portion of decoding time is dedicated
to feature extraction.

Method Preprocess time Inf. time
Baseline 34.89s 189.20s
Optimized 20.71s 185.07s

Table 2: Optimized feature extraction.

3.2 Training

Optimizers. In Figure 1, we compare the rate of
convergence of training and total train time using
different optimizers: a vanilla SGD optimizer with
step size = 1.0 and an unregularized Adagrad op-
timizer with η = 1.0. Using the unregularized
Adagrad optimizer, training converges faster and
reaches a much higher F1-score of 88.36.

Figure 1: F1 score per optimizer



Gradient update computation. To store the
gradient, we make use python’s Counter collec-
tion. Our baseline implementation used the + op-
erator to add sparse feature vectors (also imple-
mented as Counter’s) to the gradient; however,
we discovered that Counter.update provided
a faster equivalent operation, producing a ∼ 1%
relative reduction in train time over 1 epoch on a
small set of 5000 examples.

3.3 Inference
Beam search. Beam search is a generalization of
a greedy algorithm in which we maintain a list of
the top-k candidates in each step of the search. In
the context of Viterbi decoding, we consider the k
most likely tags from the previous timestep, rather
than considering all possible transitions. By re-
ducing the size of the search space, beam search
speeds up inference.

In Table 2, we report the relative speedup for
different beam ”widths” (i.e., values of k) for total
inference time. The baseline model uses Viterbi
decoding without beam search, where transitions
from all 9 possible previous tags are considered
at each timestep. For these experiments, we use
our best model (trained with unregularized Ada-
grad over 10 epochs).

Beam width Dev F1 Inf. time Speedup
No beam (k=9) 88.36 161.86s -
k=3 31.74 154.13s 4.78%
k=5 53.61 159.54s 1.43%
k=7 64.69 161.55s .19%

Table 3: Relative inference speedup for different
beam widths.

Inference time decreases marginally as the
beam width decreases; however, the speedup
comes at a significant cost to performance.

References
Erik F. Tjong Kim Sang and Fien De Meulder. 2003.

Introduction to the CoNLL-2003 Shared Task: Lan-
guage Independent Named Entity Recognition. In
Proceedings of the Conference on Natural Language
Learning. (CoNLL).


