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Abstract

Recently, Bun, Livni, and Moran [BLM20] and Alon, Livni, Malliaris, and Moran [ALMM19]
showed that a concept class H ⊆ {±1}|X | is online learnable if and only if it is differentially-
privately PAC learnable. This paper surveys the main technical ingredients involved in proving
this equivalence and describes the relevant background. We also highlight some follow-up work
as well as remaining open questions.
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1 Introduction

In this paper, we survey a line of work characterizing the close relationship between differential
privacy and online learning for binary classification. In particular, we focus on a recent milestone
comprising two major results: (1) Alon, Livni, Malliaris, and Moran [ALMM19] showed that private
PAC learnability implies a finite Littlestone dimension; subsequently, (2) Bun, Livni, and Moran
[BLM20] proved that every concept class with finite Littlestone dimension can be learned by an
approximate differentially-private learner. Together, these two results imply an equivalence between
online learnability and differentially-private PAC learnability.1

The works of Bun et al. and Alon et al. mark significant progress towards characterizing the
relationship between online and private learning. Below, we cover the background for understanding
this equivalence and sketch the main proofs. We start by defining the private and online learning
models and associated preliminaries. Then, we cover the main results of Bun et al. and Alon et al.
Finally, we highlight some recent work as well as remaining open questions.

1.1 PAC Learning

In the PAC model [Val84], a learner is provided with a training sequence S = ((x1, y1), . . . , (xm, ym)).
Each xi is drawn i.i.d. from a domain set X according to an unknown distribution D and labeled
by yi from a label set Y according to an unknown concept c : X −→ Y from a concept class H. The
goal of a PAC learning algorithm is to output a hypothesis h : X −→ Y which has good general-
ization error with respect to the unknown distribution D. In this work, we only consider binary
classification, so we fix Y := {±1}.

Definition 1.1 (Generalization error). Let D be a distribution over X × Y. The generalization
error of a hypothesis h : X −→ Y is defined by

LD(h) = Pr
(x,y)∼D

[h(x) 6= y].

Given this setup, we now define when a concept class is PAC learnable.

Definition 1.2 (PAC learning). A concept class H ⊆ Y |X | is (ε, δ)-PAC learnable if there exists
a learning algorithm A (called the learner) and a function m : (ε, δ) → N (called the sample
complexity), such that given any sample S of size at least m(ε, δ), A will output a hypothesis h
such that the following holds:

Pr
S∼Dm

[LD(h) > ε] < δ

for every distribution Dm on (X × Y)m and every ε, δ ∈ (0, 1).

If the learner outputs a hypothesis h ∈ H, then we call A a proper learner and say that
H is properly PAC-learnable. Otherwise, A can output any arbitrary function to minimize the
generalization error, and we call A an improper learner.

Since the learner does not have access to D, it cannot compute the generalization error. It is
useful to define a notion of error that depends only on the training sequence.

Definition 1.3 (Empirical error). Let S = ((x1, y1), . . . , (xm, ym)) be a training sequence. The
empirical error of a hypothesis h : X −→ Y with respect to S is defined by

LS(h) =
1

m
|i ∈ [m] : h(xi) 6= yi|.

1A concept class has finite Littlestone dimension if and only if it is online-learnable [Lit87].
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We can also define a learner which has low empirical error with high probability

Definition 1.4 (Empirical learner). An algorithm A is an (α, β)-accurate empirical learner for
a concept class H with sample complexity m if, for every h ∈ H and for every sample S =
((x1, h(x1)), . . . , (xm, h(xm)), the algorithm outputs a function f satisfying:

Pr
f∼A(S)

[LS(f) ≤ α] ≥ 1− β

Due to the work of Vapnik and Chervonenkis [VC71] and Blumer et al. [BEHW89], it is
known that the sample complexity m to PAC-learn a concept class H is tightly characterized by a
combinatorial parameter of the concept class called the VC dimension:

m = Θ(VCdim(H)).

The VC dimension of a concept class bounded above by the log of its size: VCdim(H) ≤ log|H|,
but in general it can be much smaller, as we see in the following example.

1.1.1 Example: PAC-learning Thresholds

We consider an example of PAC-learning the concept class of threshold functions. A threshold
functionover an ordered domain ft : X → {±1}, parameterized by a threshold t ∈ X , is one that
outputs +1 for all inputs less than or equal to the threshold, and outputs −1 for all other inputs.
Let T ∈ N, and let X = [T ] = {1, . . . , T} be our input domain. The class of possible threshold
functions is defined as THRT = {ft : X → {±1}, ∀t ∈ [T ]}, where ft(x) = {+1 if x ≤ t else −1}.

A natural learning algorithm is to output a hypothesis ĥ ∈ THRT whose threshold is equal to
the largest positively-labeled point from the training sequence. One can show that this learning
algorithm is sufficient to PAC-learn THRT . That is, given a sample of size m = Θ

( log(1/δ)
ε

)
,

LD(ĥ) ≤ ε

with probability at least 1− δ.
From the perspective of VC dimension, one can show that VCdim(THRT ) = 1, notably in-

dependent of T . Consequently, we can PAC-learn the class of thresholds over an infinite domain
with sample complexity Θ(VCdim(THR∞)) = Θ(1). We will revisit the concept class of thresholds
throughout this paper.

1.2 Differential Privacy

The statistical analysis of large datasets underpins many computer programs which aid in complex
decision-making. These datasets often contain sensitive information (e.g., health and financial
records). Private learning seeks algorithms which can extract statistical insights from data without
revealing any information at the level of the individual.

Suppose that a hospital has a dataset of patient records which we use to produce a statistical
model. Consider an adversary who queries our model with the intent of learning information about a
particular patient using the responses they receive. Differential privacy requires that the adversary
should not be able to tell the difference between the responses they get and the responses they
would have gotten if that patient’s data was removed from the dataset and replaced with arbitrary
other values. In other words, differential privacy guarantees that the effect of each individual on
the learned model is “hidden” from outside observers.
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Differential privacy enables the statistical analysis of datasets while providing mathematical
guarantees that individual-level information does not leak to any adversary. This notion of privacy
is accepted as the “gold standard” for protection. The notion of differential privacy developed over
a series of works [DN04, BDMN05], culminating in the work of Dwork, McSherry, Nissim, and
Smith [DMNS16]. See [DMNS16] or [Vad17] for additional information.

A learner is differentially-private if perturbing a single example in the training sequence does
not appreciably change the output hypothesis. Below, we define the differentially-private PAC
model introduced in [KLN+11]. We start by defining (ε, δ)-indistinguishable distributions.

Definition 1.5 ((ε, δ)-indistinguishable distributions). For a, b ∈ R, let a =ε,δ b denote the state-
ment

a ≤ eεb+ δ and b ≤ eεa+ δ.

Two distributions p, q are (ε, δ)-indistinguishable if p(E) =ε,δ q(E) for every event E.

The definition of indistinguishable distributions has nice composition properties, such as the
following:

Lemma 1.6 (Basic Composition Lemma [Vad17]). If p, q are (ε, δ)-indistinguishable then for all
k ∈ N, pk and qk are (kε, kδ)-indistinguishable, where pk, qk are k-fold products of p, q.

We now define the differentially-private PAC model.

Definition 1.7 (Differentially-private PAC learning). A randomized learning algorithm

A : (X × {±1})m −→ {±1}|X |

is (ε, δ)-differentially private if, for every two samples S, S′ ∈ (X ×{±1})m that disagree on a single
example, the output distributions A(S) and A(S′) are (ε, δ)-indistinguishable. A concept class
H = {h : X −→ {±1}} is differentially-private PAC learnable if there exists an algorithm A that is
(ε, δ)-differentially private.

The case of δ = 0 is referred to as pure differential privacy. In the approximate differential
privacy setting, a class H is privately learnable if it is PAC-learnable by an algorithm A that is
(ε(m), δ(m))-differentially private with ε(m) ≤ o(1), and δ(m) ≤ m−ω(1).

We will need the following lemma, which states that for any approximate differentially-private
learner, there is a private empirical learner with the same privacy and accuracy parameters and
with slightly larger sample size.

Lemma 1.8 (Lemma 5.9 [BNSV15]). Suppose ε < 1 and A is an (ε, δ)-differentially private, (α, β)-
accurate learning algorithm for a concept class H with sample complexity m. Then there exists an
(ε, δ)-differentially private, (α, β)-accurate empirical learner for H with sample complexity 9m.

1.2.1 Example: Privately Learning Thresholds

Consider the learning algorithm which we proposed for PAC-learning thresholds in Section 1.1.1.
This algorithm is notably not differentially-private, because it reveals the value of the training
example selected for the hypothesis threshold ĥ.
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1.3 Online Learning

Online learning models the scenario in which the learner must make predictions on sequentially
arriving data. Rather than being given a training sequence (as in the PAC model), online learning
is performed in rounds. A single round works as follows: the learner is challenged with an instance
xt ∈ X and is required to answer with a label ŷt ∈ {±1}. Once the learner makes a prediction,
the true label yt ∈ {±1} is revealed to the learner. The example (xt, yt) can be used to improve
prediction in future rounds. The goal of the learner is to make as few prediction mistakes as
possible.

Definition 1.9. Let H = {h : X −→ {±1}} be a concept class over the domain X and A be an
online learning algorithm. Given a sequence of examples S, let MA(S) be the number of mistakes
A makes on the sequence S. Denote the supremum of MA(S) over all possible sequences S by
MA(H). A bound of the form MA(H) ≤ B < ∞ is called a mistake bound. A hypothesis class H
is online learnable if there exists an algorithm A for which MA(H) ≤ B <∞.

This notion of online learning is called the online mistake-bound model. It was first introduced by
Littlestone [Lit87] and then extended to the agnostic case by Ben-David, Pál, and Shalev-Shwartz
[BDPSS09].

1.3.1 Littlestone Dimension

The Littlestone dimension is a combinatorial parameter that captures mistake and regret bounds
in online learning [Lit87]. Littlestone showed that the mininum mistake bound achievable by any
online learner for a given concept class is exactly the Littlestone dimension of the class. More
precisely, in the context of the online mistake-bound model, the Littlestone dimension of a concept
class H is given by Ldim(H) = min{B | ∃ a learner for H with mistake bound B}. Furthermore, he
described an explicit algorithm, called the Standard Optimal Algorithm (SOA), which achieves this
optimal mistake bound. In round t of the algorithm, we receive an instance xt. Then, we partition
our hypothesis class Ht into two subclasses based on xt: those which label the instance positively
and those which label the instance negatively. Our prediction ŷt is the label which corresponds to
the subclass with the larger Littlestone dimension. Finally, after receiving the correct response yt,
we prune our hypothesis class to be the subclass corresponding to yt.

Algorithm 1: Standard Optimal Algorithm

H1 ← H;
for round t← 1, 2, 3, . . . do

For each b ∈ {±1} and x ∈ X , let Hbt(x) = {h ∈ Ht : h(x) = b}. Define ht : X → {±1}
by ht(x) = argmaxbLdim(Hbt(x));

Receive instance xt;
Predict ŷt = ht(x);
Receive correct response yt;
Update Ht+1 ← Hytt (xt);

end

A training sequence {(xt, yt)}Tt=1 is said to be realizable by the concept class H if there exists
some target concept c ∈ H such that yt = c(xt), ∀t = 1, . . . , T . In this case, the sequence is said to
be consistent with c.
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1.3.2 Example: Online-learning Thresholds

Let us revisit the example of learning the class of threshold functions in the context of online
learning. Let the space of input examples be [T ] = {1, . . . , T}, and let our concept class be
THRT = {ft : [T ] → {±1}}. In the first round, not having seen any examples, we guess the
threshold to lie in the middle of the domain at T/2. Then, the adversary gives us a point x1; if
x1 ≤ T/2 we predict +1, otherwise we predict −1. The adversary then reveals the correct response
y1. If our prediction is correct, we leave our hypothesis as is. If we guessed incorrectly, we adjust
our hypothesis threshold to be the midpoint between our current known bound and this newly
mislabeled point. We proceed in this binary-search fashion, which implies a mistake bound of
log T . Therefore, Ldim(THRT ) = log T .

2 Main Ideas

In this section, we summarize the main ideas involved in proving the following equivalence.

Theorem 2.1 (Private PAC Learning ≡ Online Prediction). The following statements are equiv-
alent for a concept class H ⊆ {±1}|X |:

1. H is online learnable.

2. H is approximate differentially-privately PAC learnable.

2.1 Private PAC Learning =⇒ Online Learning

To show that private PAC learnability implies online learnability, Alon et al. prove the contrapos-
itive: if a concept class H has infinite Littlestone dimension, then H cannot be privately learned.
The proof can be broken into two parts:

Step 1: If a concept class H has infinite Littlestone dimension, then it contains the class of
thresholds over an infinite domain.

Step 2: Any class that contains thresholds over an infinite domain is not privately learnable.

Steps 1 and 2 together imply, by contraposition, that private PAC learnability implies online
learnability.

Step 1: Littlestone classes contain finite thresholds. Step 1 is implied by previous results of
Shelah (1978) and Hodges (1997), which provide a simple connection between Littlestone dimension
and thresholds.

Theorem 2.2 (Littlestone dimension and thresholds [She78, Hod97]). a

1. If the Ldim(H) ≥ d then H contains blog dc thresholds.

2. If H contains d thresholds then its Ldim(H) ≥ blog dc.

We say that a concept class H contains k thresholds if there are x1, . . . , xk ∈ X and h1, . . . , hk ∈ H
such that hi(xj) = +1 if and only if i ≤ j for all i, j ≤ k.
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Step 2: Thresholds cannot be privately learned. The first major progress towards showing
Step 2 came in 2015. Bun, Nissim, Stemmer, and Vadhan [BNSV15] showed that thresholds over
an infinite domain are not properly, privately learnable. However, to show Step 2, one must extend
this result to improper learners. Why is improper learning relevant here? In improper learning,
being non-learnable is an inherited property: if a class C contains a non-learnable class D, then the
class C is also not learnable. This is because if we could learn C, then we have improperly learned
anything it contains. Hence, if you can show that a class C is not improperly learnable, then any
class that contains C is also not learnable. The main result of Alon et al. is to extend the work of
Bun et al. to improper private learners.

Theorem 2.3 (Informal version of Theorem 3.8). The class of thresholds over an infinite domain
cannot be learned privately, even by an improper learner.

Finally, we briefly remark on the difficulty of showing lower bounds for improper learners. The
main obstacle comes from the fact that an improper learner can output any function. So, it is
necessary to find some structure in the output of the algorithm that is always present. The authors
accomplish this via Ramsey Theory. Specifically, for a sufficiently large input domain X , one can
make a Ramseyean argument that for every possible learner A there must be a subset X ′ with
a certain structure with respect to A. Then, X ′ is used to construct hard distributions which
imply lower bounds on the sample complexity for any algorithm that improperly privately learns
thresholds.

2.2 Private PAC Learning ⇐= Online Learning

The proof of this implication hinges on the notion of global stability. A PAC learner is globally-
stable with respect to a distribution if you can specify a probability η and a number of samples n
such that the learner is guaranteed to output some particular hypothesis with probability η, given
any training sequence of at least n points. The main result consists of two steps:

Step 1: Any concept class with finite Littlestone dimension d has a globally-stable PAC-learner.

Step 2: We can convert any globally-stable PAC learner into an DP PAC-learner with finite
sample complexity.

Step 1: Online learning implies globally-stable learning. To prove the existence of a
globally-stable PAC learner, we start with a concept class H that is online learnable with mistake
bound d. Our high-level strategy is to force an online learner to make d mistakes with respect to
a special training sequence that we construct. With (exponentially small) positive probability, our
constructed training sequence will be consistent with the target concept (i.e., all constructed labels
agree with those produced by the target concept). In the case that the constructed sequence is
consistent with the target concept, our learning algorithm will output the target concept, having
already made d mistakes. This construction is enough to show that the target concept will always
be output with some small positive probability, which is enough to show global stability. Moreover,
we show that the hypotheses output by this procedure are guaranteed to have good generalization
error.

Step 2: Globally-stable learning implies private learning. Given a globally-stable PAC
learner G, we use standard techniques from differential privacy to convert it into a DP PAC learner.
Specifically, we subsample from the original distribution D and run each sample through G to pro-
duce a set of hypotheses H. We then select the most frequently occurring of these hypotheses using
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DP Heavy Hitter Identification, a differentially-private subroutine, to produce a subset of hypothe-
ses H′. Given the guarantee of both likelihood and good generalization error on the hypotheses
output by our globally-stable learner, we know that a good hypothesis will end up in H′. Finally,
we can apply a generic private learner (defined in Section 4.2.3) to a fresh sample from D using H′
as our concept class in order to produce our final hypothesis.

3 Private Learning Implies Finite Littlestone Dimension

In this section, we discuss and summarize the main technical components involved in showing that
differentially-private PAC learnability implies finite Littlestone dimension. We begin by introducing
some definitions and notation.

A sample S = ((x1, y1), . . . , (xm, ym)) is increasing, balanced, and realizable when x1 < x2 <
. . . < xm, m is even, and when the first half of the yi’s are −1 and the second half are +1.
SX = {x1, . . . , xm} is the set of unlabelled examples corresponding to S. ordS(x) = |{i|xi < x}|.
A(S) is a distribution over hypotheses output by the randomized learning algorithm A, given the
sample S. Then,

AS(x) = Pr
h∼A(S)

[h(x) = +1].

The tower function is defined as

twri(x) =

{
x if i = 1.

2twri−1(x) if i > 1.

The iterated logarithm is defined as

log(i) x =

{
log x if i = 0.

1 + log(i−1) log x if i > 0.

Finally, the function log∗ x is the number of times the iterated logarithm needs to be applied before
the result is less than or equal to 1. Formally,

log∗ x =

{
0 if x ≤ 1.

1 + log∗ log x if i > 0.

3.1 Every Learning Algorithm Has Homogeneous Sets

We cover the Ramseyean argument used to show that every learning algorithm must have some
structure. Specifically, for every learning algorithm, there is a subset of the domain X that is
homogeneous with respect to the learning algorithm, which we explain below.

A set system or family F on the set X is a collection of sets where each set is a subset of X.
A family is k-uniform when all its members are k-element sets. A graph, typically denoted by a
pair G = (V,E), can be described as a family: E is a 2-uniform family on the set V . Because of
this relation, families can be viewed as a generalization of graphs and are often called hypergraphs.
The members of a family F are often called hyperedges. A q-coloring of hyperedges χ : F −→ [q] of
a family F assigns one of the colors 1, . . . , q to each member of F .

The complete k-hypergraph on an n-element set, denoted by K
(k)
n , is equivalent to the family

of all k-element subsets of [n]. Let χ : K
(k)
n −→ [q] be a q-coloring of the complete k-hypergraph on

n elements. The set X ⊆ [n] is a homogeneous set when all the k-element subsets of X are assigned
the same color by χ.
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Figure 1: A hypergraph with 6 vertices and 4 hyperedges. This hypergraph can also be written as
a family F on the set {1, . . . , 6}: F = {{1, 2, 3}, {2, 3}, {4}, {3, 5, 6}}.

Theorem 3.1 (Erdős and Rado, [ER52]). Let s > t ≥ 2 and q be integers, and let

N ≥ twrt(3sq log q).

Then, for every q-coloring of K
(t)
N there is a homogeneous set of size s.

Another way to state Theorem 3.1 is as follows. For any q-coloring of the complete t-hypergraph
on N vertices, there is a complete t-hypergraph on s vertices that is monochromatic.

We now introduce the notion of homogeneous sets with respect to a learning algorithm.

Definition 3.2 (m-homogeneous set). A set X ′ ⊆ X is m-homogeneous with respect to a learning
algorithm A if there are numbers pi ∈ [0, 1], for 0 ≤ i ≤ m such that for every increasing balanced
realizable sample S ∈ (X ′ × {±1})m and for every x ∈ X ′ \ SX :

|AS(x)− pi| ≤
1

102m
,

where i = ordS(x). The list (pi)
m
i=0 is called the probabilities-list of X ′ with respect to A.

Using the result of Erdős and Rado, one can show that there is always a large subset of the
domain that is homogeneous with respect to the learning algorithm.

Lemma 3.3 (Every learning algorithm has large homogeneous sets; Lemma 9 [ALMM19]). Let A
be a learning algorithm that is defined over input samples of size m over a domain X ⊆ R with
|X | = n. Then, there is a set X ′ ⊆ X that is m-homogeneous with respect to A of size

|X ′| ≥ log(m)(n)

2O(m logm)
.

Proof. We will describe a coloring on (m + 1)-element subsets of the domain X . In other words,

we will define an edge coloring for K
(m+1)
n (recall, |X | = n). Let D = {x1 < x2 < . . . < xm+1}

be an (m + 1)-element subset of X . For each i ∈ [m + 1], define D−i := D \ {xi}, and let S−i

denote the increasing balanced realizable sample on D−i. Set pi to be the fraction of the form t
102m

that is closest to AS−i(xi). Note that there are 102m+ 1 total fractions of this form, and that, by
construction, |AS−i(xi) − pi| ≤ 1

102m
. The coloring assigned to D is then the list (p1, . . . , pm+1).

Since pi can take on 102m+ 1 different values and there are m+ 1 elements in the list, our coloring
requires at most (102m+ 1)m+1 colors. Set t := m+ 1, q := (102m+ 1)m+1, and N := n. Then, we
can apply Theorem 3.1 to deduce a lower bound on the size of the homogeneous set X ′.
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3.2 Homogeneous Sets Imply Lower Bounds

We have shown that, given a learning algorithm A, there exists a homogeneous set X ′. Now we
will use X ′ to construct a family of hard distributions, which will imply lower bounds for privately
learning thresholds.

Throughout the remainder of this section, let A be an (0.1, δ)-differentially private algorithm
with sample complexity m and δ ≤ 1

103m2 logm
, and let X ′ = {1, . . . , k} be a m-homogeneous set

with respect to A. Note that we lower bounded the size of X ′ in the previous section, and that
X ′ ⊆ X , where we have relabeled the elements 1 through k for convenience. Finally, let A be a
(1/16, 1/16)-empirical learner of thresholds over X ′. We begin by showing that the probabilities-list
of X ′ with respect to A always has two consecutive values that are far apart.

Fact 3.4 (Claim 14 [ALMM19]). Let (pi)
m
i=0 denote the probabilities-list of X ′ with respect to A.

Then, for some 0 < i ≤ m,

pi − pi−1 ≥
1

4m
.

Proof sketch. Let S be a balanced increasing realizable sample such that SX ⊆ X ′. Use the fact
that A is a (1/16, 1/16)-empirical learner to show

7

8
≤ E

h∼A(S)
(1− LS(h)) =

1

m

m/2∑
i=1

[1−AS(xi)] +
1

m

m∑
i=m/2+1

[AS(xi)],

where the equality follows from the fact that S is balanced, increasing, and realizable. This implies
that there exists an m/2 ≤ m1 ≤ m such that AS(xm1) ≥ 3/4.

Now, let S′ be the training sequence where xm1 is replaced by xm1 +1 (but the label ym1 remains
the same). Then, since A is (0.1, δ)-differentially private, we know that

AS′(xm1) ≥
(3

4
− δ
)
e−0.1 ≥ 2

3
.

By the definition of m-homogeneity with respect to A, we can further say that pm1−1 ≥ 2/3 −
1/102m. Similarly, we can find an 1 ≤ m2 ≤ m/2 such that and pm2−1 ≤ 1/3 + 1/102m. Together,
this implies that there exists some i such that m2 − 1 ≤ i ≤ m1 − 1 and

pi − pi−1 ≥
1/3

m
− 1

50m2
≥ 1

4m
.

We will use this fact to construct a family of distributions that are hard for the private learning
algorithm A.

Lemma 3.5 (Lemma 12 [ALMM19]). Set n := k − m. There exists a family of distributions
P = {Pi}ni=1 over {±1}n with the following properties.

1. Every Pi, Pj ∈ P are (0.1, δ)-indistinguishable.

2. There exists an r ∈ [0, 1] such that for all i, j ≤ n

Pr
v∼Pi

[v(j) = +1] =

{
≤ r − 1

10m if j < i.

≥ r + 1
10m if j > i.
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Proof. Let i be the index such that pi − pi−1 ≥ 1/4m, which must exist due to Fact 3.4. Let
S ∈ (X×{±1})m be an increasing realizable sample such that the following holds: for xi−1, xi+1 ∈ S,
let

J ⊆ X ′ = {x ∈ X ′ : x ∈ (xi−1, xi+1)}

such that |J | = k −m. Let Sx be the sample S where xi is replaced with x. This yields a family
of samples {Sx : x ∈ J} that differ in only one example. Therefore, the following properties hold:

1. The output distributions A(Sx′) and A(Sx′′) are (0.1, δ)-indistinguishable. (This follows from
the fact that A is (0.1, δ)-differentially private.)

2. Set r = pi+1+pi
2 . Then for all x, x′ ∈ J :

Pr
h∼A(Sx)

[h(x′) = +1] =

{
≤ r − 1

10m if x′ < x.

≥ r + 1
10m if x′ > x.

Define n := k −m = |J | and restrict the hypothesis output by A to only label points in J . Then,
the output distribution A(Sx) is a distribution over hypotheses h which are restricted to J , so they
are isomorphic to a distribution over {±1}n. Similarly, since |J | = n, J is isomorphic to [n]. This
concludes the proof.

Thus far, we have shown that k −m = |P| where P is a family of distributions with a certain
set of properties. We now show an upper bound on |P|.

Lemma 3.6 (Lemma 13 [ALMM19]). Let P be the family of distributions defined in Lemma 3.5.

Then, |P| ≤ 210
3m2 log2m.

Proof sketch. Set T := 103m2 log2m − 1 and D := 102m2 log T . We want to show that |P| =
n ≤ 2T+1. For the sake of contradiction, assume that n > 2T+1. Let Q = {PDi : Pi ∈ P}
be a family of distributions, which contain the D-fold product of the distributions in P. By the
Basic Composition Lemma of differential privacy (Lemma 1.6), we know that each distinct pair
Qi, Qj ∈ Q is (0.1D, δD)-indistinguishable.

Since the distributions in the family P have support over {±1}n, the distributions in the family
Q have support over v = (v1, . . . , vD), where each vi ∈ v is a vector in {±1}n (i.e., v is a sequence
of D vectors in {±1}n). We define v̄ ∈ {±1}n as

v̄(j) =

{
−1 if 1

D

∑D
i=1 vi(j) ≤ r.

+1 if 1
D

∑D
i=1 vi(j) > r.

That is, to find the jth value of v̄, we average the jth values of each vi ∈ v and pick ±1 depending
on if the average is above or below some threshold r.

We now define a mapping B according to the outcome of T steps of a binary search on v̄. The
binary search works as follows. Initialize an index j = n/2. Query the jth entry of v̄. If it is +1,
then recursively search the first half of the list. Else, recursively search the right half. Define the
mapping B(v̄) to be the entry that was queried at the T th step of the binary search. Let Ej be
the probability of drawing a sample v from Q ∈ Q such that B(v̄) = j. Since we have assumed
that n > 2T+1, the events Ej corresponding to each outcome of B are mutually disjoint.

Recall that for each Pi ∈ P there exists an r ∈ [0, 1] such that for all distinct i, j ≤ n

Pr
v∼Pi

[v(j) = +1] =

{
≤ r − 1

10m if j < i.

≥ r + 1
10m if j > i.
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Thus, by taking a large i.i.d. sample from Pi, the probability will concentrate on the event that B
outputs entry i. Specifically, given the D-fold sample v from Qi, one can show that the event Ei
(i.e., the event that B(v) = i) has probability at least

1− Te−2
1

102m2D = 1− Te−2 log T ≥ 2

3
,

by using a Chernoff Bound and the Union Bound. Then, we can use the fact that Qi, Qj ∈ Q are
(0.1D, δD)-indistinguishable to show that for all j ≤ n and i in the image of B that

Qj(Ei) ≥
1

2
e−0.1D.

Then, since all 2T of the Ei’s are mutually disjoint, we have

1 ≥ Qj(∪iEi) =
∑
i

Qj(Ei) ≥ 2T−1e−0.1D,

but 2T−1e−0.1D > 1, which is a contradiction. Therefore we can conclude that |P| = n ≤ 2T+1.

Combining Lemmas 3.5 and 3.6 yields a lower bound for privately learning thresholds.

Lemma 3.7 (Large homogeneous sets imply lower bounds for private learning; Lemma 10 [ALMM19]).
Let A be an (0.1, δ)-differentially private algorithm with sample complexity m and δ ≤ 1

103m2 logm
.

Let X ′ = {1, . . . , k} be m-homogeneous with respect to A. Then, if A empirically learns the class
of thresholds over X ′ with (1/16, 1/16)-accuracy, then

k = 2O(m2 log2m).

In other words, m = Ω
( √

log k
log log k

)
.

Proof. In Lemma 3.5 we showed k − m = |P|. In Lemma 3.6 we showed |P| ≤ 210
3m2 log2m.

Combining these two results gives k −m ≤ 210
3m2 log2m =⇒ k = 2O(m2 log2m).

3.3 Putting It All Together

So far we have shown that, for a m-homogeneous set X ′ ⊂ X , with respect to learning algorithm
A,

log(m) n

2O(m logm)
≤ |X ′| ≤ 2O(m2 log2m).

The first inequality was shown in Lemma 3.3 and the second inequality in Lemma 3.7. This implies
that

log(m) n

2O(m logm)
≤ 2O(m2 log2m) =⇒ log(m) n ≤ 2c·m

2 logm,

for some positive constant c. Applying the iterated logarithm log∗(2c·m
2 logm) = log∗m + O(1)

times yields that
log(m+log∗m+O(1)) n ≤ 1.

This implies that log∗ n ≤ log∗m+m+O(1) which implies m ≥ Ω(log∗ n). This is summarized in
the main result of Alon et al.:
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Theorem 3.8 (Thresholds are not privately learnable). Let X ⊆ R of size |X | = n and let A be
a ( 1

16 ,
1
16)-accurate learning algorithm for the class of thresholds over X with sample complexity m

which satisfies (ε, δ)-differential privacy with ε = 0.1 and δ = O( 1
m2 logm

). Then,

m ≥ Ω(log∗ n).

In particular, the class of thresholds over an infinite X cannot be learned privately.

Combining Theorem 3.8 with Theorem 2.2 yields the following corollary.

Corollary 3.9 (Private learning implies finite Littlestone dimension). Let H be a concept class
with Littlestone dimension d ∈ N, and let A be a ( 1

16 ,
1
16)-accurate learning algorithm for the class

of thresholds over X with sample complexity m which satisfies (ε, δ)-differential privacy with ε = 0.1
and δ = O( 1

m2 logm
). Then,

m ≥ Ω(log∗ d).

.

Proof. We prove the contrapositive. That is, we show that if the Littlestone dimension of a class H
is infinite, then you cannot privately learn H. Let H be a concept class with Littlestone dimension
d. By Theorem 2.2, H contains blog dc thresholds. Therefore, Theorem 3.8 implies a lower bound of
m ≥ Ω(log∗ log d) = Ω(log∗ d) for any (0.1, O(1/m2 logm))-differentially private learning algorithm
that learns H to (1/16, 1/16)-accuracy. Taking d→∞ completes the proof.

4 Finite Littlestone Dimension Implies Private Learning

We state the main result of [BLM20]:

Theorem 4.1 (Littlestone Classes are Privately Learnable). Let H ⊆ {±1}|X | be a class with
Littlestone dimension d, let ε, δ ∈ (0, 1) be privacy parameters, and let α, β ∈ (0, 1/2) be accuracy
parameters. For

n = O

(
16d · d2 · (d+ log(1/βδ))

αε

)
= Od

(
log(1/βδ)

αε

)
there exists an (ε, δ)-DP learning algorithm such that for every realizable distribution D, given an
input sample S ∼ Dn, the output hypothesis f = A(S) satisifies LD(f) ≤ α with probabilitiy at
least 1− β, where the probability is taken over S ∼ Dn as well as the internal randomness of A.

In this section, we will give a sketch of the proof of the above theorem by explaining its key
ingredients. Lemmas 4.3 and 4.4 establish the existence and generalization of a globally-stable
learner. Theorem 4.7 establishes the existence of a private learner, given a globally-stable learner.
Combining these results leads to Theorem 4.1.

4.1 Online Learning Implies Globally-Stable Learning

First, we define the notion of global stability and argue that any class H with finite Littlestone
dimension can be learned by a globally-stable algorithm. We also show that global stability is
sufficient to guarantee generalization bounds for a realizable distribution2.

2A distribution D is said to be realizable by H if there is an h ∈ H such that LD(h) = 0.
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4.1.1 Global Stability

The notion of stability in general describes robustness of the output distribution with respect to
small perturbations in the input, intuitively similar to the notion of differential privacy. Bun et al.
introduce a stronger notion of algorithmic stability called global stability which provides the link
between finite Littlestone dimension and private learnability. Whereas typical notions of stability
describe robustness when changing a single sample in the training sequence, global stability is a
robustness guarantee when changing the entire training sequence.

Definition 4.2 (Global stability). For η > 0 and n ∈ N, a learning algorithm A is (n, η)-globally
stable with respect to a distribution D over examples if there exists a hypothesis h whose frequency
as an output is at least η. That is,

Pr
S∼Dn

[A(S) = h] ≥ η.

Our goal is to define a globally-stable algorithm that can PAC-learn any class with finite Lit-
tlestone dimension. Our strategy will be to define a learning algorithm that, with probability η,
outputs the target concept by forcing d mistakes on a specially constructed training sequence of
length n. For any arbitrarily constructed training sequence, making d mistakes does not guaran-
tee that we will output the target concept. However, if our training sequence is consistent with
the target concept, then making d mistakes will indeed identify the target concept (given that the
learner’s mistake bound is d). The key to proving global stability for online learners thus lies in
lower-bounding the probability with which we can construct a sequence that both (1) forces d
mistakes and (2) is consistent with the target concept.

Below, we provide an algorithm that outputs such a training sequence3. For a pair of samples
S, T , we denote their concatenation by S◦T . In each iteration i of this algorithm, we add a mistake-
inducing example to our training sequence by constructing a “contest” between two hypotheses
h1, h2. First, we create a “contest example” (x, y) which is guaranteed to disagree with at least one
the hypotheses. Then, we select the hypothesis which disagrees and append the training sample
which produced it, as well as the contest example, to our aggregate training sequence.

Algorithm 2: Training sequence construction

Result: A training sequence Sn;d which forces d mistakes
S ← {};
for i← 1, . . . , d do

Run SOA on fresh samples S1, S2 ∼ Dn until they produce distinct hypotheses h1, h2;
Take any point x on which they disagree: h1(x) 6= h2(x);
Sample arbitrary label y uniformly from {±1};
if h1(x) 6= y then

S ← S ◦ S1 ◦ (x, y);
else

S ← S ◦ S2 ◦ (x, y);
end

end
return S;

3We will construct a training sequence for an online learner, but we can trivially convert it to a standard, “batch”
training sequence for PAC learning by taking the union of examples over all rounds. This is a technique commonly
referred to as “online-to-batch” conversion.
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4.1.2 Existence of Frequently Occurring Hypotheses

Let Sn;d be the result of running Algorithm 2. Given this constructed training sequence, the
following lemma establishes the existence of a frequently occurring hypothesis, which is the key to
global stability:

Lemma 4.3. Let S = Sn;d and let T ∼ Dn. There exists a hypothesis f such that

Pr[SOA(S ◦ T ) = f ] ≥ 2−d

Proof. We show that this must hold when f is the target concept c. This follows from the fact
that each contest label yi is drawn independently of xi and the sample so far. Therefore yi = c(xi)
with probability 1/2 independently for each contest example, and the probability that all d contest
examples are consistent with c is 2−d. (Note that if this holds, the entire sequence S◦T is consistent
with c, because all other examples drawn from D are consistent with c.) Now, since each contest
example forces a mistake on the SOA, and since the SOA does not make more than d mistakes on
realizable training sequences, it follows that SOA(S ◦ T ) = c. Therefore

Pr[SOA(S ◦ T ) = c] ≥ 2−d,

which concludes the proof.

4.1.3 Generalization

The next lemma shows that only hypotheses f that generalize well satisfy the conclusion of Lemma
4.3.

Lemma 4.4 (Generalization). Let S = Sn;d and let T ∼ Dn. Every f such that

Pr[SOA(S ◦ T ) = f ] ≥ 2−d

satisfies LD(f) ≤ d
n .

Proof. Let f be a hypothesis such that Pr[SOA(S ◦ T ) = f ] ≥ 2−d and let α = LD(f). We will
argue that

2−d ≤ (1− α)n. (1)

Define the events A,B as follows.

1. A is the event that SOA(S ◦ T ) = f . By assumption, Pr[A] ≥ 2−d.

2. B is the event that f is consistent with T . Since |T | = n, we have that Pr[B] = (1− α)n.

Note that A ⊆ B; whenever SOA(S ◦ T ) = f , it must be the case that f is consistent with
T , because the SOA always produces hypotheses which are consistent with the training sequence.
Therefore Pr[A] ≤ Pr[B], which implies (1) and concludes the proof (using the fact that (1−α) <
2−α and taking the logarithm of both sides).

So far we have shown that any class with finite Littlestone dimension can be learned by a
globally-stable algorithm, and that the generalization error of the resulting hypothesis is bounded
above by d/n. In the next section, we show how we use this globally-stable learner to produce a
differentially-private one.
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4.2 Globally-Stable Learning Implies Private Learning

Converting our globally-stable learner into a private learner leverages two tools from differential
privacy. In this section, we first give an overview of the algorithm, then describe each of the tools
used from differential privacy, then state the privacy guarantees and sample complexity of the
overall algorithm.

4.2.1 Overview

A diagram of the algorithm is depicted in Figure 2. First, we draw k samples from Dm. We run
each sample through our globally-stable learner G to produce k different hypotheses. Given the
global stability of G, we know that there exists a hypothesis which outputs with some frequency
and generalizes well; we choose k to ensure that this likely hypothesis is among the h1, . . . , hk
output by G with high probability. We then use an (ε, δ)-differentially private subroutine called
Stable Histograms (labeled as “DP Heavy Hitter Identification” in the diagram) to select the most
frequently occurring hypotheses, at least one of which will be our good and likely hypothesis. We
use the result of this subroutine as our new hypothesis class and run a generic DP learning algorithm
with a fresh sample to produce our final hypothesis.

Figure 2: Converting a globally-stable learner G into a private learner. Source: slides from Mark
Bun’s TCS+ talk.

4.2.2 Stable Histograms

Here we describe the subroutine labeled in the diagram as “DP Heavy Hitter Identification”, also
known as Stable Histograms. Given a list of elements, this subroutine outputs all elements which
occur with frequency at least η while guaranteeing (ε, δ)-differential privacy over the input list.
Below we give a more formal definition.

Let X be the input domain, and let S ∈ X n. For an element x ∈ X , define freqS(x) = 1
n · |{i ∈

[n] : xi = x}|, i.e., the fraction of the elements in S which are equal to x.

Lemma 4.5. (Stable Histograms [KKMN], [BNS16]). Let X be any input domain. For

n ≥ O
(

log(1/ηβδ)

ηε

)
there exists an (ε, δ)-differentially private algorithm Hist which, with probability at least 1 − β, on
input S = (x1, . . . , xn) outputs a list L ⊆ X and a sequence a ∈ [0, 1]|L| such that

1. Every x with freqS(x) ≥ η appears in L, and

2. For every x ∈ L, the estimate ax satisfies |ax − freqS(x)| ≤ η.
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4.2.3 Generic DP Learner

Using the Exponential Mechanism of McSherry and Talwar [MT07], Kasiviswanath et al. [KLN+11]
described a generic differentially-private learner based on approximate empirical risk minimization.

Lemma 4.6. (Generic Private Learner [KLN+11]). Let H ⊆ {±1}|X | be a hypothesis class. For

n = O

(
log(H) + log(1/β)

αε

)
there exists an ε-differentially private algorithm GenericLearner : (X × {±1})n → H such that the
following holds. Let D be a distribution over (X × {±1}) such that there exists h∗ ∈ H with

LD(h∗) ≤ α.

Then on input S ∼ Dn, the algorithm GenericLearner outputs, with probability at least 1 − β, a
hypothesis ĥ ∈ H such that

LD(ĥ) ≤ 2α.

4.2.4 Construction of a private learner

We now state in detail the algorithm which combines the Stable Histograms algorithm with the
Generic DP Learner to convert any globally-stable learning algorithm into a differentially-private
one. Theorem 4.7 gives the sample complexity of this algorithm. The algorithm is as follows:

Differentially-Private Learner M

1. Let S1, . . . , Sk each consist of m i.i.d samples from D. Run G on each batch of samples
producing h1 = G(S1), . . . , hk = G(Sk).

2. Run the Stable Histogram Hist algorithm on input H = (h1, . . . , hk) using privacy parameters
(ε/2, δ) and accuracy parameters (η/8, β/3), producing a list L of frequent hypotheses.

3. Let S′ consist of n′ i.i.d samples from D. Run GenericLearner(S′) using the collection of
hypotheses L with privacy parameter ε/2 and accuracy parameters (α/2, β/3) to output a
hypothesis ĥ.

The following theorem is realized by the learning algorithm M described above.

Theorem 4.7. Let H be a concept class over input domain X . Let G : (X × {±1})m → {±1}|X|
be a randomized algorithm such that, for D a realizable distribution and S ∼ Dm, there exists a
hypothesis h such that Pr[G(S) = h] ≤ η and LD(h) ≤ α/2.

Then for some

n = O

(
m · log(1/ηβδ)

ηε
+

log(1/ηβ)

αε

)
there exists an (ε, δ)-differentially private algorithm M : (X × {±1})n → {±1}X which, given n
i.i.d samples from D, produces a hypothesis ĥ such that LD(ĥ) ≤ α with probability at least 1− β.

Here, the parameter

k = O

(
log(1/ηβδ)

ηε

)
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is chosen so that Lemma 4.5 guarantees algorithm Hist succeeds with the stated accuracy parame-
ters. The parameter

n′ = O

(
log(1/ηβ)

αε

)
is chosen so that Lemma 4.5 guarantees that GenericLearner succeeds on a list L of size |L| ≤ 2/η
with the given accuracy and confidence parameters.

5 Recent Work and Open Questions

We conclude by listing some follow-up work and open questions.

1. Jung, Kim, and Tewari [JKT20] study the relationship between private and online learning
beyond the setting of binary classification. For multiclass classification, they show that the
equivalence holds, using a combinatorial parameter analogous to Littlestone dimension. In
the case of regression, they show that private learning implies online learning; however, the
converse remains an open question.

2. A natural related question is: are there efficient transformations between these two types of
learners? Gonen, Hazan, and Moran [GHM19] showed a restricted class of polynomial-time,
differentially-private learners with low sample complexity which can be efficiently transformed
into polynomial-time online learners. However, such a conversion does not exist in general;
Bun [Bun20] shows that, assuming the existence of one-way functions, such an efficient conver-
sion is impossible even for general pure-private learners with polynomial sample complexity.
Whether the converse holds (does polynomial-time online learning imply polynomial-time
private learning?) is still an open question.

3. The fundamental theorem of PAC learning relies on showing several results: (i) uniform
convergence implies learnability, (ii) learnability implies finite VC dimension, (iii) and finite
VC dimension implies uniform convergence. With the works surveyed in this paper, we
are close to a fundamental theorem of private PAC learning. It has been shown that: proper
private learning implies private uniform convergence [BLM19] and private learnability implies
finite Littlestone dimension [ALMM19]. To complete a fundamental theorem of private PAC
learning, all that remains to be shown is that finite Littlestone dimension implies private
uniform convergence. See [BLM19] for definitions.
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