CS388 Project 2: Semantic Parsing with Encoder-Decoder Models

Kelsey Ball
The University of Texas at Austin
kelseytaylorball@gmail.com

Abstract

In this project, we implement an encoder-
decoder model for semantic parsing, eval-
uating it on the Geoquery dataset. We
extend our baseline model by implement-
ing dot-product attention over the input
sequence, producing significant improve-
ments in both model performance and
training time. Finally, we implement
batched processing of inputs during train-
ing and report its effect on model perfor-
mance and training time.

1 Semantic Parsing

Semantic parsing is the task of translating an ex-
pression between different semantic forms. In this
project, we translate geographical queries written
in natural English into Prolog formulas which can
be executed against a knowledge base.

1.1 Data

We use the Geoquery dataset (Zelle and Mooney,
1996) to evaluate our model. Here is an example
from the dataset of an English query and its Prolog
translation:
what is the population of
atlanta ga ?

_,answer (A , (_population (
B, A) , _const (B,
(atlanta , -))))

_cityid

We evaluate our model using three metrics:

1. Token-level accuracy computes the percent-
age of position-by-position token matches
across all examples in the evalution set.

2. Exact-match accuracy computes the percent-
age of examples in the evaluation set where
the predicted formula exactly matches the
true formula.

3. Denotation accuracy computes the percent-
age of examples for which the predicted for-
mula and the true formula, when used to
query the given knowledge base, return the
same result.

2 Encoder-Decoder Models

We implement an encoder-decoder, or “sequence-
to-sequence”, model, following (Jia and Liang,
2016). Our encoder is an LSTM over the input
sequence, such that a sentence encoding is given
by the last hidden state (and last cell state) of the
LSTM.

The decoder consists of an LSTM initialized
with the input sequence encoding and fed the em-
bedding of a special start token. At each step of
decoding, we pass the LSTM output vector to a
linear layer with outer dimension equal to the size
of the output vocabulary. Finally, applying a soft-
max layer to this result provides a probability dis-
tribution over possible output tokens.

During inference, we simply take the argmax
of this distribution, emit the corresponding token,
and feed in the embedding of this token as input to
the next decoding step. However, during training,
we implement “teacher-forcing”: at each decoding
step, we feed the correct token into the LSTM as
input, regardless of which word the decoder previ-
ously emitted.

2.1 Attention

We augment our previous model by implementing
attention over the input LSTM states. Specifically,
we implement dot-product attention from (Luong
et al. 2015), where the attention weight for each
input LSTM state is given by its dot product with
the decoder output. Then, we take the correspond-
ing weighted sum of the input LSTM states, con-
catenate it with the decoder output, and feed the
result into the final linear and softmax layers.

2.2 Hyperparameters

Both models are trained for 10 epochs using an
Adam optimizer with step size 1e—3. The encoder
and decoder have hidden sizes of 100 and use sep-
arate vocabularies with randomly initialized, 300-
dimensional embeddings.

3 Results

Our attention mechanism dramatically improves
the performance of the model. Below, we compare
the performance of our encoder-decoder model
with and without attention, averaged across 5 runs:

Model Exact | Token | Denotation

Baseline | 10.0 % | 72.3% 12.5%

w/ attn 29.3% | 73.3% 32.5%
Table 1: Basic encoder-decoder model vs.

encoder-decoder model with added attention over
input LSTM states.

We note that dot-product attention provides an
20% absolute improvement in average denotation
accuracy.

Attention also increases the speed of training.
As seen in Table 2, the encoder-decoder model
with attention trains ~ 20% faster than the model
without attention.

Model Avg per epoch | Total train
Baseline 14s 186.86s
w/ attn 16.8s 222.84s

Table 2: Comparison of average training time per
epoch over 10 epochs vs. total training time be-
tween the baseline encoder-decoder model and the
model with added attention.

4 Batching

Our project extension implements batched pro-
cessing of inputs training. We verify that the total
loss decreases per epoch; however, we are unable
to reach token-level accuracies above ~ 25% for
larger batch sizes, so it’s possible that the imple-
mentation has a bug, or that we have not found
suitable hyperparameters. Below, we report the
token-level accuracy and train times for some dif-
ferent batch sizes.

Batch size | Token-level acc. | Train time
1 72.8 212.37s
10 40.2 73.37s
60 26.4 59.58s

Table 3: Accuracy and training time by batch size.

References

John M. Zelle and Raymond J. Mooney. 1996. Learn-
ing to Parse Database Queries Using Inductive
Logic Programming. In AAAL

Minh-Thang Luong, Hieu Pham, and Christopher D.
Manning. 2015. Effective Approaches to Attention-
based Neural Machine Translation. In EMNLP.

Robin Jia and Percy Liang. 2016. Data Recombination
for Neural Semantic Parsing. In ACL.

