
CS388 Mini 2: Sentiment Analysis with Neural Networks

Kelsey Ball
The University of Texas at Austin

kelseytaylorball@gmail.com

1 Introduction

Sentiment analysis is the task of labeling a text as
either positive or negative in terms of emotional
valence. In this project, we implement two neural
networks for sentiment analysis: a feed-forward
neural network and a recurrent neural network.
We discuss trade-offs in speed, model complexity,
and performance.

1.1 Data

We evaluate on a dataset of movie reviews from
Rotten Tomatoes. Below are some example re-
views from the dataset with their labels:

Positive:
Good fun, good action, good acting, good di-
alogue, good pace, good cinematography.

Negative:
This isn’t a new idea.

2 Feed-Forward Neural Network

A Deep Averaging Network (DAN) a la Iyyer et.
al (2015) is a multi-layer, feed-forward neural net-
work that represents a sentence as the average of
its word embeddings, then learns a deep neural
network for classification of the sentence embed-
ding.

2.1 Hyperparameters

Our basic DAN has two hidden layers of size 100
with ReLU activation and 50-dim fixed gloVe em-
beddings. We train our network for 10 epochs
using Adam with a step size of 1e − 3 and a
batch size of 1. In Table 1, we show the perfor-
mance of this model using two methods of aggre-
gating word embeddings into a sentence embed-
ding: FFNN-avg is a DAN which averages the
word embeddings in a sentence, while FFNN-sum
sums the embeddings. We also compare these two
implementations against a trivial, non-neural base-

line which predicts the label positive for all exam-
ples.

Model Accuracy Train time Inf. time
Baseline 50.92 0.00s 0.01s
FFNN-avg 73.62 44.13s 1.31s
FFNN-sum 74.54 44.48s 1.30s

Table 1: Baseline vs. FFNN.

Both averaging and summing seem to work sim-
ilarly well; the difference in accuracy between the
two methods is smaller than the variance in accu-
racy in both methods across several trials.

2.2 Embeddings
In Table 2, we compare different approaches to
learning embeddings in the DAN model: frozen
refers to pre-trained gloVe vectors whose values
are not updated during training; fine-tuned
refers to pre-trained gloVe vectors which are
updated during training; and from scratch
refers to randomly initializing and learning em-
beddings for each word in the training vocabulary.
Our best model uses 300-dim, fine-tuned gloVe
vectors.

Model Accuracy Train time
50-dim, frozen 73.62 53.54s
300-dim, frozen 78.78 53.39s
50-dim, fine-tuned 80.05 829.32s
300-dim, fine-tuned 82.00 1928.45s
50-dim, from scratch 78.21 825.27s
300-dim, from scratch 77.06 2010.96s

Table 2: Different embedding approaches.

3 Recurrent Neural Network

We also implement a sentiment classifier using a
recurrent neural network. Our model is a bidi-
rectional, 1-layer LSTM with hidden dimension



100, where the input to the LSTM at each timestep
is the embedding for each word in the sequence.
Our best model uses fine-tuned, 300-dim gloVe
vectors; however, we also experiment with freez-
ing the embeddings as well as learning them from
scratch. Our model is trained with Adam with a
step size of 1e − 3 and and batch size of 1 for
10 epochs. We also implemented batched gradient
descent, but the implementation likely has a bug
given that the accuracy dropped to that of a ran-
dom baseline for many different batch sizes.

3.1 Embeddings

Here, we again compare different approaches to
learning embeddings. For all the experiments de-
scribed in Table 3, we used a bidirectional, 1-layer
LSTM.

Emb dim/update Accuracy Train time
50-dim, frozen 76.72 703.45s
300-dim, frozen 80.96 777.95s
50-dim, fine-tuned 81.54 1004.76s
300-dim, fine-tuned 82.34 3132.66s
50-dim, from scratch 76.69 993.39s
300-dim, from scratch 78.82 3243.28s

Table 3: Embedding dim and learning strategy vs.
accuracy, train time.

Fine-tuning the 50-dim embeddings resulted
in a 6.28% relative increase in accuracy, but a
42.67% relative increase in training time. This
tradeoff is even steeper for the 300-dim embed-
dings, where the relative increase in accuracy is
smaller than for the 50-dim embeddings, yet the
training time more than triples.

3.2 Layers

In Table 4, we compare unidirectional vs. bidi-
rectional LSTM’s with 1 vs. 2 layers. For these
experiments, we used fixed, 50-dim gloVe embed-
dings.

Num layers/dirs Accuracy Train time
1-layer, uni-dir 79.13 389.40s
2-layer, uni-dir 79.35 869.12s
1-layer, bi-dir 78.67 721.14s
2-layer, bi-dir 76.95 1470.34

Table 4: Num layers, directionality vs. accuracy,
train time.

Surprisingly, accuracy does not increase signif-
icantly when adding directions/layers; however,
the training time more than doubles.

4 Discussion

Despite having far fewer parameters, our DAN
models achieve the same accuracy as LSTM’s
with the same hidden size and embeddings. Fur-
thermore, it takes more than 10 times longer to
train the smallest LSTM relative to the equiva-
lent DAN. As such, DAN’s or other simple feed-
forward networks ought to be strongly consid-
ered for sentence-level classification before using
larger and more complex RNN’s.

References
Mohit Iyyer, Varun Manjunatha, Jordan Boyd-Graber,

and Hal Daume III. 2015. Deep Unordered Com-
position ´ Rivals Syntactic Methods for Text Clas-
sification. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
(ACL).


